1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
// This file is part of a joint effort between Eigen, a lightweight C++ template library
// for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/)
//
// Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com>
// Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com>
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MPREALSUPPORT_MODULE_H
#define EIGEN_MPREALSUPPORT_MODULE_H
#include <Eigen/Core>
#include <mpreal.h>
namespace Eigen {
/**
* \defgroup MPRealSupport_Module MPFRC++ Support module
* \code
* #include <Eigen/MPRealSupport>
* \endcode
*
* This module provides support for multi precision floating point numbers
* via the <a href="http://www.holoborodko.com/pavel/mpfr">MPFR C++</a>
* library which itself is built upon <a href="http://www.mpfr.org/">MPFR</a>/<a href="http://gmplib.org/">GMP</a>.
*
* \warning MPFR C++ is licensed under the GPL.
*
* You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder.
*
* Here is an example:
*
\code
#include <iostream>
#include <Eigen/MPRealSupport>
#include <Eigen/LU>
using namespace mpfr;
using namespace Eigen;
int main()
{
// set precision to 256 bits (double has only 53 bits)
mpreal::set_default_prec(256);
// Declare matrix and vector types with multi-precision scalar type
typedef Matrix<mpreal,Dynamic,Dynamic> MatrixXmp;
typedef Matrix<mpreal,Dynamic,1> VectorXmp;
MatrixXmp A = MatrixXmp::Random(100,100);
VectorXmp b = VectorXmp::Random(100);
// Solve Ax=b using LU
VectorXmp x = A.lu().solve(b);
std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl;
return 0;
}
\endcode
*
*/
template<> struct NumTraits<mpfr::mpreal>
: GenericNumTraits<mpfr::mpreal>
{
enum {
IsInteger = 0,
IsSigned = 1,
IsComplex = 0,
RequireInitialization = 1,
ReadCost = HugeCost,
AddCost = HugeCost,
MulCost = HugeCost
};
typedef mpfr::mpreal Real;
typedef mpfr::mpreal NonInteger;
static inline Real highest (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); }
static inline Real lowest (long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); }
// Constants
static inline Real Pi (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); }
static inline Real Euler (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); }
static inline Real Log2 (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); }
static inline Real Catalan (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_catalan(Precision); }
static inline Real epsilon (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::machine_epsilon(Precision); }
static inline Real epsilon (const Real& x) { return mpfr::machine_epsilon(x); }
#ifdef MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS
static inline int digits10 (long Precision = mpfr::mpreal::get_default_prec()) { return std::numeric_limits<Real>::digits10(Precision); }
static inline int digits10 (const Real& x) { return std::numeric_limits<Real>::digits10(x); }
static inline int digits () { return std::numeric_limits<Real>::digits(); }
static inline int digits (const Real& x) { return std::numeric_limits<Real>::digits(x); }
#endif
static inline Real dummy_precision()
{
mpfr_prec_t weak_prec = ((mpfr::mpreal::get_default_prec()-1) * 90) / 100;
return mpfr::machine_epsilon(weak_prec);
}
};
namespace internal {
template<> inline mpfr::mpreal random<mpfr::mpreal>()
{
return mpfr::random();
}
template<> inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b)
{
return a + (b-a) * random<mpfr::mpreal>();
}
inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return mpfr::abs(a) <= mpfr::abs(b) * eps;
}
inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return mpfr::isEqualFuzzy(a,b,eps);
}
inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return a <= b || mpfr::isEqualFuzzy(a,b,eps);
}
template<> inline long double cast<mpfr::mpreal,long double>(const mpfr::mpreal& x)
{ return x.toLDouble(); }
template<> inline double cast<mpfr::mpreal,double>(const mpfr::mpreal& x)
{ return x.toDouble(); }
template<> inline long cast<mpfr::mpreal,long>(const mpfr::mpreal& x)
{ return x.toLong(); }
template<> inline int cast<mpfr::mpreal,int>(const mpfr::mpreal& x)
{ return int(x.toLong()); }
// Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff)
// This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal
template<>
class gebp_traits<mpfr::mpreal, mpfr::mpreal, false, false>
{
public:
typedef mpfr::mpreal ResScalar;
enum {
Vectorizable = false,
LhsPacketSize = 1,
RhsPacketSize = 1,
ResPacketSize = 1,
NumberOfRegisters = 1,
nr = 1,
mr = 1,
LhsProgress = 1,
RhsProgress = 1
};
typedef ResScalar LhsPacket;
typedef ResScalar RhsPacket;
typedef ResScalar ResPacket;
};
template<typename Index, typename DataMapper, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<mpfr::mpreal,mpfr::mpreal,Index,DataMapper,1,1,ConjugateLhs,ConjugateRhs>
{
typedef mpfr::mpreal mpreal;
EIGEN_DONT_INLINE
void operator()(const DataMapper& res, const mpreal* blockA, const mpreal* blockB,
Index rows, Index depth, Index cols, const mpreal& alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0)
{
if(rows==0 || cols==0 || depth==0)
return;
mpreal acc1(0,mpfr_get_prec(blockA[0].mpfr_srcptr())),
tmp (0,mpfr_get_prec(blockA[0].mpfr_srcptr()));
if(strideA==-1) strideA = depth;
if(strideB==-1) strideB = depth;
for(Index i=0; i<rows; ++i)
{
for(Index j=0; j<cols; ++j)
{
const mpreal *A = blockA + i*strideA + offsetA;
const mpreal *B = blockB + j*strideB + offsetB;
acc1 = 0;
for(Index k=0; k<depth; k++)
{
mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_srcptr(), B[k].mpfr_srcptr(), mpreal::get_default_rnd());
mpfr_add(acc1.mpfr_ptr(), acc1.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd());
}
mpfr_mul(acc1.mpfr_ptr(), acc1.mpfr_srcptr(), alpha.mpfr_srcptr(), mpreal::get_default_rnd());
mpfr_add(res(i,j).mpfr_ptr(), res(i,j).mpfr_srcptr(), acc1.mpfr_srcptr(), mpreal::get_default_rnd());
}
}
}
};
} // end namespace internal
}
#endif // EIGEN_MPREALSUPPORT_MODULE_H
|