1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
#define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
namespace Eigen {
/** \class TensorVolumePatch
* \ingroup CXX11_Tensor_Module
*
* \brief Patch extraction specialized for processing of volumetric data.
* This assumes that the input has a least 4 dimensions ordered as follows:
* - channels
* - planes
* - rows
* - columns
* - (optional) additional dimensions such as time or batch size.
* Calling the volume patch code with patch_planes, patch_rows, and patch_cols
* is equivalent to calling the regular patch extraction code with parameters
* d, patch_planes, patch_rows, patch_cols, and 1 for all the additional
* dimensions.
*/
namespace internal {
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType>
{
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = XprTraits::NumDimensions + 1;
static const int Layout = XprTraits::Layout;
};
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense>
{
typedef const TensorVolumePatchOp<Planes, Rows, Cols, XprType>& type;
};
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1, typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type>
{
typedef TensorVolumePatchOp<Planes, Rows, Cols, XprType> type;
};
} // end namespace internal
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorVolumePatchOp>::type Nested;
typedef typename Eigen::internal::traits<TensorVolumePatchOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
PaddingType padding_type, Scalar padding_value)
: m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
m_padding_explicit(false), m_padding_top_z(0), m_padding_bottom_z(0), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
m_padding_type(padding_type), m_padding_value(padding_value) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
DenseIndex padding_top_z, DenseIndex padding_bottom_z,
DenseIndex padding_top, DenseIndex padding_bottom,
DenseIndex padding_left, DenseIndex padding_right,
Scalar padding_value)
: m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
m_padding_explicit(true), m_padding_top_z(padding_top_z), m_padding_bottom_z(padding_bottom_z), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
m_padding_left(padding_left), m_padding_right(padding_right),
m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
EIGEN_DEVICE_FUNC
DenseIndex patch_planes() const { return m_patch_planes; }
EIGEN_DEVICE_FUNC
DenseIndex patch_rows() const { return m_patch_rows; }
EIGEN_DEVICE_FUNC
DenseIndex patch_cols() const { return m_patch_cols; }
EIGEN_DEVICE_FUNC
DenseIndex plane_strides() const { return m_plane_strides; }
EIGEN_DEVICE_FUNC
DenseIndex row_strides() const { return m_row_strides; }
EIGEN_DEVICE_FUNC
DenseIndex col_strides() const { return m_col_strides; }
EIGEN_DEVICE_FUNC
DenseIndex in_plane_strides() const { return m_in_plane_strides; }
EIGEN_DEVICE_FUNC
DenseIndex in_row_strides() const { return m_in_row_strides; }
EIGEN_DEVICE_FUNC
DenseIndex in_col_strides() const { return m_in_col_strides; }
EIGEN_DEVICE_FUNC
DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; }
EIGEN_DEVICE_FUNC
DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
EIGEN_DEVICE_FUNC
DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
EIGEN_DEVICE_FUNC
bool padding_explicit() const { return m_padding_explicit; }
EIGEN_DEVICE_FUNC
DenseIndex padding_top_z() const { return m_padding_top_z; }
EIGEN_DEVICE_FUNC
DenseIndex padding_bottom_z() const { return m_padding_bottom_z; }
EIGEN_DEVICE_FUNC
DenseIndex padding_top() const { return m_padding_top; }
EIGEN_DEVICE_FUNC
DenseIndex padding_bottom() const { return m_padding_bottom; }
EIGEN_DEVICE_FUNC
DenseIndex padding_left() const { return m_padding_left; }
EIGEN_DEVICE_FUNC
DenseIndex padding_right() const { return m_padding_right; }
EIGEN_DEVICE_FUNC
PaddingType padding_type() const { return m_padding_type; }
EIGEN_DEVICE_FUNC
Scalar padding_value() const { return m_padding_value; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
protected:
typename XprType::Nested m_xpr;
const DenseIndex m_patch_planes;
const DenseIndex m_patch_rows;
const DenseIndex m_patch_cols;
const DenseIndex m_plane_strides;
const DenseIndex m_row_strides;
const DenseIndex m_col_strides;
const DenseIndex m_in_plane_strides;
const DenseIndex m_in_row_strides;
const DenseIndex m_in_col_strides;
const DenseIndex m_plane_inflate_strides;
const DenseIndex m_row_inflate_strides;
const DenseIndex m_col_inflate_strides;
const bool m_padding_explicit;
const DenseIndex m_padding_top_z;
const DenseIndex m_padding_bottom_z;
const DenseIndex m_padding_top;
const DenseIndex m_padding_bottom;
const DenseIndex m_padding_left;
const DenseIndex m_padding_right;
const PaddingType m_padding_type;
const Scalar m_padding_value;
};
// Eval as rvalue
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device>
{
typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType;
typedef typename XprType::Index Index;
static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
static const int NumDims = NumInputDims + 1;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
enum {
IsAligned = false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false,
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device)
{
EIGEN_STATIC_ASSERT((NumDims >= 5), YOU_MADE_A_PROGRAMMING_MISTAKE);
m_paddingValue = op.padding_value();
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
// Cache a few variables.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_inputDepth = input_dims[0];
m_inputPlanes = input_dims[1];
m_inputRows = input_dims[2];
m_inputCols = input_dims[3];
} else {
m_inputDepth = input_dims[NumInputDims-1];
m_inputPlanes = input_dims[NumInputDims-2];
m_inputRows = input_dims[NumInputDims-3];
m_inputCols = input_dims[NumInputDims-4];
}
m_plane_strides = op.plane_strides();
m_row_strides = op.row_strides();
m_col_strides = op.col_strides();
// Input strides and effective input/patch size
m_in_plane_strides = op.in_plane_strides();
m_in_row_strides = op.in_row_strides();
m_in_col_strides = op.in_col_strides();
m_plane_inflate_strides = op.plane_inflate_strides();
m_row_inflate_strides = op.row_inflate_strides();
m_col_inflate_strides = op.col_inflate_strides();
// The "effective" spatial size after inflating data with zeros.
m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1;
m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1);
m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
if (op.padding_explicit()) {
m_outputPlanes = numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
m_planePaddingTop = op.padding_top_z();
m_rowPaddingTop = op.padding_top();
m_colPaddingLeft = op.padding_left();
} else {
// Computing padding from the type
switch (op.padding_type()) {
case PADDING_VALID:
m_outputPlanes = numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
m_planePaddingTop = 0;
m_rowPaddingTop = 0;
m_colPaddingLeft = 0;
break;
case PADDING_SAME: {
m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides));
m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
const Index dz = m_outputPlanes * m_plane_strides + m_patch_planes_eff - 1 - m_input_planes_eff;
const Index dy = m_outputRows * m_row_strides + m_patch_rows_eff - 1 - m_input_rows_eff;
const Index dx = m_outputCols * m_col_strides + m_patch_cols_eff - 1 - m_input_cols_eff;
m_planePaddingTop = dz - dz / 2;
m_rowPaddingTop = dy - dy / 2;
m_colPaddingLeft = dx - dx / 2;
break;
}
default:
eigen_assert(false && "unexpected padding");
}
}
eigen_assert(m_outputRows > 0);
eigen_assert(m_outputCols > 0);
eigen_assert(m_outputPlanes > 0);
// Dimensions for result of extraction.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
// ColMajor
// 0: depth
// 1: patch_planes
// 2: patch_rows
// 3: patch_cols
// 4: number of patches
// 5 and beyond: anything else (such as batch).
m_dimensions[0] = input_dims[0];
m_dimensions[1] = op.patch_planes();
m_dimensions[2] = op.patch_rows();
m_dimensions[3] = op.patch_cols();
m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols;
for (int i = 5; i < NumDims; ++i) {
m_dimensions[i] = input_dims[i-1];
}
} else {
// RowMajor
// NumDims-1: depth
// NumDims-2: patch_planes
// NumDims-3: patch_rows
// NumDims-4: patch_cols
// NumDims-5: number of patches
// NumDims-6 and beyond: anything else (such as batch).
m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
m_dimensions[NumDims-2] = op.patch_planes();
m_dimensions[NumDims-3] = op.patch_rows();
m_dimensions[NumDims-4] = op.patch_cols();
m_dimensions[NumDims-5] = m_outputPlanes * m_outputRows * m_outputCols;
for (int i = NumDims-6; i >= 0; --i) {
m_dimensions[i] = input_dims[i];
}
}
// Strides for the output tensor.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_rowStride = m_dimensions[1];
m_colStride = m_dimensions[2] * m_rowStride;
m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0];
m_otherStride = m_patchStride * m_dimensions[4];
} else {
m_rowStride = m_dimensions[NumDims-2];
m_colStride = m_dimensions[NumDims-3] * m_rowStride;
m_patchStride = m_colStride * m_dimensions[NumDims-4] * m_dimensions[NumDims-1];
m_otherStride = m_patchStride * m_dimensions[NumDims-5];
}
// Strides for navigating through the input tensor.
m_planeInputStride = m_inputDepth;
m_rowInputStride = m_inputDepth * m_inputPlanes;
m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes;
m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes;
m_outputPlanesRows = m_outputPlanes * m_outputRows;
// Fast representations of different variables.
m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride);
m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides);
m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes);
m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows);
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
} else {
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
// Patch index corresponding to the passed in index.
const Index patchIndex = index / m_fastPatchStride;
// Spatial offset within the patch. This has to be translated into 3D
// coordinates within the patch.
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
// Batch, etc.
const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride;
const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
// Calculate column index in the input original tensor.
const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
const Index colOffset = patchOffset / m_fastColStride;
const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
if (inputCol < 0 || inputCol >= m_input_cols_eff ||
((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
return Scalar(m_paddingValue);
}
// Calculate row index in the original input tensor.
const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride;
const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
if (inputRow < 0 || inputRow >= m_input_rows_eff ||
((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
return Scalar(m_paddingValue);
}
// Calculate plane index in the original input tensor.
const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride;
const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop;
const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) {
return Scalar(m_paddingValue);
}
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
const Index inputIndex = depth +
origInputRow * m_rowInputStride +
origInputCol * m_colInputStride +
origInputPlane * m_planeInputStride +
otherIndex * m_otherInputStride;
return m_impl.coeff(inputIndex);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 ||
m_in_plane_strides != 1 || m_plane_inflate_strides != 1) {
return packetWithPossibleZero(index);
}
const Index indices[2] = {index, index + PacketSize - 1};
const Index patchIndex = indices[0] / m_fastPatchStride;
if (patchIndex != indices[1] / m_fastPatchStride) {
return packetWithPossibleZero(index);
}
const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride;
eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
// Find the offset of the element wrt the location of the first element.
const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
(indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
const Index patch3DIndex = (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
const Index colOffsets[2] = {
patchOffsets[0] / m_fastColStride,
patchOffsets[1] / m_fastColStride};
// Calculate col indices in the original input tensor.
const Index inputCols[2] = {
colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft,
colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
}
if (inputCols[0] != inputCols[1]) {
return packetWithPossibleZero(index);
}
const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
const Index rowOffsets[2] = {
(patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride,
(patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride};
eigen_assert(rowOffsets[0] <= rowOffsets[1]);
// Calculate col indices in the original input tensor.
const Index inputRows[2] = {
rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop,
rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
}
if (inputRows[0] != inputRows[1]) {
return packetWithPossibleZero(index);
}
const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
const Index planeOffsets[2] = {
patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride,
patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride};
eigen_assert(planeOffsets[0] <= planeOffsets[1]);
const Index inputPlanes[2] = {
planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop,
planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop};
if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) {
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
}
if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) {
// no padding
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
const Index inputIndex = depth +
inputRows[0] * m_rowInputStride +
inputCols[0] * m_colInputStride +
m_planeInputStride * inputPlanes[0] +
otherIndex * m_otherInputStride;
return m_impl.template packet<Unaligned>(inputIndex);
}
return packetWithPossibleZero(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
costPerCoeff(bool vectorized) const {
const double compute_cost =
10 * TensorOpCost::DivCost<Index>() + 21 * TensorOpCost::MulCost<Index>() +
8 * TensorOpCost::AddCost<Index>();
return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
Index planePaddingTop() const { return m_planePaddingTop; }
Index rowPaddingTop() const { return m_rowPaddingTop; }
Index colPaddingLeft() const { return m_colPaddingLeft; }
Index outputPlanes() const { return m_outputPlanes; }
Index outputRows() const { return m_outputRows; }
Index outputCols() const { return m_outputCols; }
Index userPlaneStride() const { return m_plane_strides; }
Index userRowStride() const { return m_row_strides; }
Index userColStride() const { return m_col_strides; }
Index userInPlaneStride() const { return m_in_plane_strides; }
Index userInRowStride() const { return m_in_row_strides; }
Index userInColStride() const { return m_in_col_strides; }
Index planeInflateStride() const { return m_plane_inflate_strides; }
Index rowInflateStride() const { return m_row_inflate_strides; }
Index colInflateStride() const { return m_col_inflate_strides; }
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
{
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index+i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
Dimensions m_dimensions;
// Parameters passed to the costructor.
Index m_plane_strides;
Index m_row_strides;
Index m_col_strides;
Index m_outputPlanes;
Index m_outputRows;
Index m_outputCols;
Index m_planePaddingTop;
Index m_rowPaddingTop;
Index m_colPaddingLeft;
Index m_in_plane_strides;
Index m_in_row_strides;
Index m_in_col_strides;
Index m_plane_inflate_strides;
Index m_row_inflate_strides;
Index m_col_inflate_strides;
// Cached input size.
Index m_inputDepth;
Index m_inputPlanes;
Index m_inputRows;
Index m_inputCols;
// Other cached variables.
Index m_outputPlanesRows;
// Effective input/patch post-inflation size.
Index m_input_planes_eff;
Index m_input_rows_eff;
Index m_input_cols_eff;
Index m_patch_planes_eff;
Index m_patch_rows_eff;
Index m_patch_cols_eff;
// Strides for the output tensor.
Index m_otherStride;
Index m_patchStride;
Index m_rowStride;
Index m_colStride;
// Strides for the input tensor.
Index m_planeInputStride;
Index m_rowInputStride;
Index m_colInputStride;
Index m_otherInputStride;
internal::TensorIntDivisor<Index> m_fastOtherStride;
internal::TensorIntDivisor<Index> m_fastPatchStride;
internal::TensorIntDivisor<Index> m_fastColStride;
internal::TensorIntDivisor<Index> m_fastRowStride;
internal::TensorIntDivisor<Index> m_fastInputPlaneStride;
internal::TensorIntDivisor<Index> m_fastInputRowStride;
internal::TensorIntDivisor<Index> m_fastInputColStride;
internal::TensorIntDivisor<Index> m_fastInputColsEff;
internal::TensorIntDivisor<Index> m_fastOutputPlanesRows;
internal::TensorIntDivisor<Index> m_fastOutputPlanes;
internal::TensorIntDivisor<Index> m_fastOutputDepth;
Scalar m_paddingValue;
TensorEvaluator<ArgType, Device> m_impl;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
|