1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
#define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
namespace Eigen {
/** \class TensorShuffling
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor shuffling class.
*
*
*/
namespace internal {
template<typename Shuffle, typename XprType>
struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = XprTraits::NumDimensions;
static const int Layout = XprTraits::Layout;
};
template<typename Shuffle, typename XprType>
struct eval<TensorShufflingOp<Shuffle, XprType>, Eigen::Dense>
{
typedef const TensorShufflingOp<Shuffle, XprType>& type;
};
template<typename Shuffle, typename XprType>
struct nested<TensorShufflingOp<Shuffle, XprType>, 1, typename eval<TensorShufflingOp<Shuffle, XprType> >::type>
{
typedef TensorShufflingOp<Shuffle, XprType> type;
};
} // end namespace internal
template<typename Shuffle, typename XprType>
class TensorShufflingOp : public TensorBase<TensorShufflingOp<Shuffle, XprType> >
{
public:
typedef typename Eigen::internal::traits<TensorShufflingOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorShufflingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorShufflingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorShufflingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shuffle)
: m_xpr(expr), m_shuffle(shuffle) {}
EIGEN_DEVICE_FUNC
const Shuffle& shufflePermutation() const { return m_shuffle; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const TensorShufflingOp& other)
{
typedef TensorAssignOp<TensorShufflingOp, const TensorShufflingOp> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
return *this;
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const OtherDerived& other)
{
typedef TensorAssignOp<TensorShufflingOp, const OtherDerived> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
return *this;
}
protected:
typename XprType::Nested m_xpr;
const Shuffle m_shuffle;
};
// Eval as rvalue
template<typename Shuffle, typename ArgType, typename Device>
struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
{
typedef TensorShufflingOp<Shuffle, ArgType> XprType;
typedef typename XprType::Index Index;
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
enum {
IsAligned = false,
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device)
{
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
const Shuffle& shuffle = op.shufflePermutation();
for (int i = 0; i < NumDims; ++i) {
m_dimensions[i] = input_dims[shuffle[i]];
}
array<Index, NumDims> inputStrides;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
inputStrides[0] = 1;
m_outputStrides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
inputStrides[i] = inputStrides[i - 1] * input_dims[i - 1];
m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
}
} else {
inputStrides[NumDims - 1] = 1;
m_outputStrides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
}
}
for (int i = 0; i < NumDims; ++i) {
m_inputStrides[i] = inputStrides[shuffle[i]];
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return m_impl.coeff(srcCoeff(index));
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index+i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
2 * TensorOpCost::MulCost<Index>() +
TensorOpCost::DivCost<Index>());
return m_impl.costPerCoeff(vectorized) +
TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize);
}
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_outputStrides[i];
inputIndex += idx * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
return inputIndex + index * m_inputStrides[0];
} else {
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / m_outputStrides[i];
inputIndex += idx * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
return inputIndex + index * m_inputStrides[NumDims - 1];
}
}
Dimensions m_dimensions;
array<Index, NumDims> m_outputStrides;
array<Index, NumDims> m_inputStrides;
TensorEvaluator<ArgType, Device> m_impl;
};
// Eval as lvalue
template<typename Shuffle, typename ArgType, typename Device>
struct TensorEvaluator<TensorShufflingOp<Shuffle, ArgType>, Device>
: public TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
{
typedef TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> Base;
typedef TensorShufflingOp<Shuffle, ArgType> XprType;
typedef typename XprType::Index Index;
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
enum {
IsAligned = false,
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: Base(op, device)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
{
return this->m_impl.coeffRef(this->srcCoeff(index));
}
template <int StoreMode> EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketReturnType& x)
{
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
for (int i = 0; i < PacketSize; ++i) {
this->coeffRef(index+i) = values[i];
}
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
|