aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h
blob: ad21e966b5164d2d5cb172e944de9c96bb643a90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com>
//                    Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
#define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
namespace Eigen {

/** \class TensorReverse
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor reverse elements class.
  *
  */
namespace internal {
template<typename ReverseDimensions, typename XprType>
struct traits<TensorReverseOp<ReverseDimensions,
                              XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename packet_traits<Scalar>::type Packet;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = XprTraits::NumDimensions;
  static const int Layout = XprTraits::Layout;
};

template<typename ReverseDimensions, typename XprType>
struct eval<TensorReverseOp<ReverseDimensions, XprType>, Eigen::Dense>
{
  typedef const TensorReverseOp<ReverseDimensions, XprType>& type;
};

template<typename ReverseDimensions, typename XprType>
struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1,
            typename eval<TensorReverseOp<ReverseDimensions, XprType> >::type>
{
  typedef TensorReverseOp<ReverseDimensions, XprType> type;
};

}  // end namespace internal




template<typename ReverseDimensions, typename XprType>
class TensorReverseOp : public TensorBase<TensorReverseOp<ReverseDimensions,
                                          XprType>, ReadOnlyAccessors>
{
  public:
  typedef typename Eigen::internal::traits<TensorReverseOp>::Scalar Scalar;
  typedef typename Eigen::internal::traits<TensorReverseOp>::Packet Packet;
  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename XprType::PacketReturnType PacketReturnType;
  typedef typename Eigen::internal::nested<TensorReverseOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorReverseOp>::StorageKind
                                                                    StorageKind;
  typedef typename Eigen::internal::traits<TensorReverseOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp(const XprType& expr,
                                          const ReverseDimensions& reverse_dims)
      : m_xpr(expr), m_reverse_dims(reverse_dims) {}

    EIGEN_DEVICE_FUNC
    const ReverseDimensions& reverse() const { return m_reverse_dims; }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

  protected:
    typename XprType::Nested m_xpr;
    const ReverseDimensions m_reverse_dims;
};


// Eval as rvalue
template<typename ReverseDimensions, typename ArgType, typename Device>
struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device>
{
  typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
  typedef typename XprType::Index Index;
  static const int NumDims = internal::array_size<ReverseDimensions>::value;
  typedef DSizes<Index, NumDims> Dimensions;

  enum {
    IsAligned = false,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,  // to be implemented
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
                                                        const Device& device)
      : m_impl(op.expression(), device), m_reverse(op.reverse())
  {
    // Compute strides
    m_dimensions = m_impl.dimensions();
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_strides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_strides[i] = m_strides[i-1] * m_dimensions[i-1];
      }
    } else {
      m_strides[NumDims-1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_strides[i] = m_strides[i+1] * m_dimensions[i+1];
      }
    }
  }

  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename XprType::PacketReturnType PacketReturnType;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  const Dimensions& dimensions() const { return m_dimensions; }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
    m_impl.evalSubExprsIfNeeded(NULL);
    return true;
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    eigen_assert(index < dimensions().TotalSize());
    Index inputIndex = 0;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i > 0; --i) {
        Index idx = index / m_strides[i];
        index -= idx * m_strides[i];
        if (m_reverse[i]) {
          idx = m_dimensions[i] - idx - 1;
        }
        inputIndex += idx * m_strides[i] ;
      }
      if (m_reverse[0]) {
        inputIndex += (m_dimensions[0] - index - 1);
      } else {
        inputIndex += index;
      }
      return m_impl.coeff(inputIndex);
    } else {
      for (int i = 0; i < NumDims - 1; ++i) {
        Index idx = index / m_strides[i];
        index -= idx * m_strides[i];
        if (m_reverse[i]) {
          idx = m_dimensions[i] - idx - 1;
        }
        inputIndex += idx * m_strides[i] ;
      }
      if (m_reverse[NumDims-1]) {
        inputIndex += (m_dimensions[NumDims-1] - index - 1);
      } else {
        inputIndex += index;
      }
      return m_impl.coeff(inputIndex);
    }
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  PacketReturnType packet(Index index) const
  {
    const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
    EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(index+packetSize-1 < dimensions().TotalSize());

    // TODO(ndjaitly): write a better packing routine that uses
    // local structure.
    EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type
                                                            values[packetSize];
    for (int i = 0; i < packetSize; ++i) {
      values[i] = coeff(index+i);
    }
    PacketReturnType rslt = internal::pload<PacketReturnType>(values);
    return rslt;
  }

  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }

 protected:
  Dimensions m_dimensions;
  array<Index, NumDims> m_strides;
  TensorEvaluator<ArgType, Device> m_impl;
  ReverseDimensions m_reverse;
};




} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H