1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
namespace Eigen {
namespace internal {
#if defined(EIGEN_USE_GPU) && defined(EIGEN_CUDACC)
// Full reducers for GPU, don't vectorize for now
// Reducer function that enables multiple cuda thread to safely accumulate at the same
// output address. It basically reads the current value of the output variable, and
// attempts to update it with the new value. If in the meantime another cuda thread
// updated the content of the output address it will try again.
template <typename T, typename R>
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
#if EIGEN_CUDA_ARCH >= 300
if (sizeof(T) == 4)
{
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
unsigned int newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
unsigned int readback;
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
}
}
else if (sizeof(T) == 8) {
unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
unsigned long long newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
unsigned long long readback;
while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
}
}
else {
assert(0 && "Wordsize not supported");
}
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
#endif // EIGEN_CUDA_ARCH >= 300
}
// We extend atomicExch to support extra data types
template <typename Type>
__device__ inline Type atomicExchCustom(Type* address, Type val) {
return atomicExch(address, val);
}
template <>
__device__ inline double atomicExchCustom(double* address, double val) {
unsigned long long int* address_as_ull = reinterpret_cast<unsigned long long int*>(address);
return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val)));
}
#ifdef EIGEN_HAS_CUDA_FP16
template <template <typename T> class R>
__device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer) {
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
unsigned int newval = oldval;
reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
if (newval == oldval) {
return;
}
unsigned int readback;
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
if (newval == oldval) {
return;
}
}
}
#endif // EIGEN_HAS_CUDA_FP16
template <>
__device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) {
#if EIGEN_CUDA_ARCH >= 300
atomicAdd(output, accum);
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
#endif // EIGEN_CUDA_ARCH >= 300
}
template <typename CoeffType, typename Index>
__global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) {
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
const Index num_threads = blockDim.x * gridDim.x;
for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
output[i] = val;
}
}
template <int BlockSize, int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
typename Self::CoeffReturnType* output, unsigned int* semaphore) {
#if EIGEN_CUDA_ARCH >= 300
// Initialize the output value
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
if (gridDim.x == 1) {
if (first_index == 0) {
*output = reducer.initialize();
}
}
else {
if (threadIdx.x == 0) {
unsigned int block = atomicCAS(semaphore, 0u, 1u);
if (block == 0) {
// We're the first block to run, initialize the output value
atomicExchCustom(output, reducer.initialize());
__threadfence();
atomicExch(semaphore, 2u);
}
else {
// Wait for the first block to initialize the output value.
// Use atomicCAS here to ensure that the reads aren't cached
unsigned int val;
do {
val = atomicCAS(semaphore, 2u, 2u);
}
while (val < 2u);
}
}
}
__syncthreads();
eigen_assert(gridDim.x == 1 || *semaphore >= 2u);
typename Self::CoeffReturnType accum = reducer.initialize();
Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
for (Index i = 0; i < max_iter; i+=BlockSize) {
const Index index = first_index + i;
eigen_assert(index < num_coeffs);
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
reducer.reduce(val, &accum);
}
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reduce(__shfl_down(accum, offset, warpSize), &accum);
#else
reducer.reduce(__shfl_down_sync(0xFFFFFFFF, accum, offset, warpSize), &accum);
#endif
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
atomicReduce(output, accum, reducer);
}
if (gridDim.x > 1 && threadIdx.x == 0) {
// Let the last block reset the semaphore
atomicInc(semaphore, gridDim.x + 1);
}
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
#endif // EIGEN_CUDA_ARCH >= 300
}
#ifdef EIGEN_HAS_CUDA_FP16
template <typename Self,
typename Reducer, typename Index>
__global__ void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) {
eigen_assert(blockDim.x == 1);
eigen_assert(gridDim.x == 1);
if (num_coeffs % 2 != 0) {
half last = input.m_impl.coeff(num_coeffs-1);
*scratch = __halves2half2(last, reducer.initialize());
} else {
*scratch = reducer.template initializePacket<half2>();
}
}
template <typename Self,
typename Reducer, typename Index>
__global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) {
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
const Index num_threads = blockDim.x * gridDim.x;
const Index num_packets = num_coeffs / 2;
for (Index i = thread_id; i < num_packets; i += num_threads) {
((half2*)output)[i] = reducer.template initializePacket<half2>();
}
if (thread_id == 0 && num_coeffs % 2 != 0) {
output[num_coeffs-1] = reducer.initialize();
}
}
template <int BlockSize, int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
half* output, half2* scratch) {
eigen_assert(NumPerThread % 2 == 0);
const Index first_index = blockIdx.x * BlockSize * NumPerThread + 2*threadIdx.x;
// Initialize the output value if it wasn't initialized by the ReductionInitKernel
if (gridDim.x == 1) {
if (first_index == 0) {
if (num_coeffs % 2 != 0) {
half last = input.m_impl.coeff(num_coeffs-1);
*scratch = __halves2half2(last, reducer.initialize());
} else {
*scratch = reducer.template initializePacket<half2>();
}
}
__syncthreads();
}
half2 accum = reducer.template initializePacket<half2>();
const Index max_iter = numext::mini<Index>((num_coeffs - first_index) / 2, NumPerThread*BlockSize / 2);
for (Index i = 0; i < max_iter; i += BlockSize) {
const Index index = first_index + 2*i;
eigen_assert(index + 1 < num_coeffs);
half2 val = input.m_impl.template packet<Unaligned>(index);
reducer.reducePacket(val, &accum);
}
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reducePacket(__shfl_down(accum, offset, warpSize), &accum);
#else
int temp = __shfl_down_sync(0xFFFFFFFF, *(int*)(&accum), (unsigned)offset, warpSize);
reducer.reducePacket(*(half2*)(&temp), &accum);
#endif
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
atomicReduce(scratch, accum, reducer);
}
if (gridDim.x == 1) {
__syncthreads();
if (first_index == 0) {
half tmp = __low2half(*scratch);
reducer.reduce(__high2half(*scratch), &tmp);
*output = tmp;
}
}
}
template <typename Op>
__global__ void ReductionCleanupKernelHalfFloat(Op& reducer, half* output, half2* scratch) {
eigen_assert(threadIdx.x == 1);
half tmp = __low2half(*scratch);
reducer.reduce(__high2half(*scratch), &tmp);
*output = tmp;
}
#endif // EIGEN_HAS_CUDA_FP16
template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
struct FullReductionLauncher {
static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) {
assert(false && "Should only be called on doubles, floats and half floats");
}
};
// Specialization for float and double
template <typename Self, typename Op, typename OutputType, bool PacketAccess>
struct FullReductionLauncher<
Self, Op, OutputType, PacketAccess,
typename internal::enable_if<
internal::is_same<float, OutputType>::value ||
internal::is_same<double, OutputType>::value,
void>::type> {
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) {
typedef typename Self::Index Index;
const int block_size = 256;
const int num_per_thread = 128;
const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
unsigned int* semaphore = NULL;
if (num_blocks > 1) {
semaphore = device.semaphore();
}
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore);
}
};
#ifdef EIGEN_HAS_CUDA_FP16
template <typename Self, typename Op>
struct FullReductionLauncher<Self, Op, Eigen::half, false> {
static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) {
assert(false && "Should not be called since there is no packet accessor");
}
};
template <typename Self, typename Op>
struct FullReductionLauncher<Self, Op, Eigen::half, true> {
static void run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs) {
typedef typename Self::Index Index;
const int block_size = 256;
const int num_per_thread = 128;
const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
half2* scratch = static_cast<half2*>(device.scratchpad());
if (num_blocks > 1) {
// We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
// won't be a race conditions between multiple thread blocks.
LAUNCH_CUDA_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
1, 1, 0, device, reducer, self, num_coeffs, scratch);
}
LAUNCH_CUDA_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch);
if (num_blocks > 1) {
LAUNCH_CUDA_KERNEL((ReductionCleanupKernelHalfFloat<Op>),
1, 1, 0, device, reducer, output, scratch);
}
}
};
#endif // EIGEN_HAS_CUDA_FP16
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple cases
// of doubles, floats and half floats
#ifdef EIGEN_HAS_CUDA_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value ||
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
#else // EIGEN_HAS_CUDA_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value);
#endif // EIGEN_HAS_CUDA_FP16
template <typename OutputType>
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
const Index num_coeffs = array_prod(self.m_impl.dimensions());
// Don't crash when we're called with an input tensor of size 0.
if (num_coeffs == 0) {
return;
}
FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs);
}
};
template <int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
typename Self::CoeffReturnType* output) {
#if EIGEN_CUDA_ARCH >= 300
typedef typename Self::CoeffReturnType Type;
eigen_assert(blockDim.y == 1);
eigen_assert(blockDim.z == 1);
eigen_assert(gridDim.y == 1);
eigen_assert(gridDim.z == 1);
const int unroll_times = 16;
eigen_assert(NumPerThread % unroll_times == 0);
const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
const Index num_threads = blockDim.x * gridDim.x;
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
// Initialize the output values if they weren't initialized by the ReductionInitKernel
if (gridDim.x == 1) {
for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
output[i] = reducer.initialize();
}
__syncthreads();
}
for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
const Index row = i / input_col_blocks;
if (row < num_preserved_coeffs) {
const Index col_block = i % input_col_blocks;
const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
Type reduced_val = reducer.initialize();
for (Index j = 0; j < NumPerThread; j += unroll_times) {
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
if (last_col >= num_coeffs_to_reduce) {
for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) {
const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
reducer.reduce(val, &reduced_val);
}
break;
} else {
// Faster version of the loop with no branches after unrolling.
#pragma unroll
for (int k = 0; k < unroll_times; ++k) {
const Index col = col_begin + blockDim.x * (j + k);
reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
}
}
}
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
#else
reducer.reduce(__shfl_down_sync(0xFFFFFFFF, reduced_val, offset), &reduced_val);
#endif
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
atomicReduce(&(output[row]), reduced_val, reducer);
}
}
}
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
#endif // EIGEN_CUDA_ARCH >= 300
}
#ifdef EIGEN_HAS_CUDA_FP16
template <int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
half* output) {
eigen_assert(blockDim.y == 1);
eigen_assert(blockDim.z == 1);
eigen_assert(gridDim.y == 1);
eigen_assert(gridDim.z == 1);
const int unroll_times = 16;
eigen_assert(NumPerThread % unroll_times == 0);
eigen_assert(unroll_times % 2 == 0);
const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2);
const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2);
const Index num_threads = blockDim.x * gridDim.x;
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
// Initialize the output values if they weren't initialized by the ReductionInitKernel
if (gridDim.x == 1) {
Index i = 2*thread_id;
for (; i + 1 < num_preserved_coeffs; i += 2*num_threads) {
half* loc = output + i;
*((half2*)loc) = reducer.template initializePacket<half2>();
}
if (i < num_preserved_coeffs) {
output[i] = reducer.initialize();
}
__syncthreads();
}
for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
const Index row = 2 * (i / input_col_blocks);
if (row + 1 < num_preserved_coeffs) {
const Index col_block = i % input_col_blocks;
const Index col_begin = 2 * (col_block * blockDim.x * NumPerThread + threadIdx.x);
half2 reduced_val1 = reducer.template initializePacket<half2>();
half2 reduced_val2 = reducer.template initializePacket<half2>();
for (Index j = 0; j < NumPerThread; j += unroll_times) {
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1) * 2;
if (last_col >= num_coeffs_to_reduce) {
Index col = col_begin + blockDim.x * j;
for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) {
const half2 val1 = input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col);
reducer.reducePacket(val1, &reduced_val1);
const half2 val2 = input.m_impl.template packet<Unaligned>((row+1) * num_coeffs_to_reduce + col);
reducer.reducePacket(val2, &reduced_val2);
}
if (col < num_coeffs_to_reduce) {
// Peel;
const half last1 = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
const half2 val1 = __halves2half2(last1, reducer.initialize());
reducer.reducePacket(val1, &reduced_val1);
const half last2 = input.m_impl.coeff((row+1) * num_coeffs_to_reduce + col);
const half2 val2 = __halves2half2(last2, reducer.initialize());
reducer.reducePacket(val2, &reduced_val2);
}
break;
} else {
// Faster version of the loop with no branches after unrolling.
#pragma unroll
for (int k = 0; k < unroll_times; ++k) {
const Index col = col_begin + blockDim.x * (j + k) * 2;
reducer.reducePacket(input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col), &reduced_val1);
reducer.reducePacket(input.m_impl.template packet<Unaligned>((row + 1)* num_coeffs_to_reduce + col), &reduced_val2);
}
}
}
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reducePacket(__shfl_down(reduced_val1, offset, warpSize), &reduced_val1);
reducer.reducePacket(__shfl_down(reduced_val2, offset, warpSize), &reduced_val2);
#else
int temp1 = __shfl_down_sync(0xFFFFFFFF, *(int*)(&reduced_val1), (unsigned)offset, warpSize);
int temp2 = __shfl_down_sync(0xFFFFFFFF, *(int*)(&reduced_val2), (unsigned)offset, warpSize);
reducer.reducePacket(*(half2*)(&temp1), &reduced_val1);
reducer.reducePacket(*(half2*)(&temp2), &reduced_val2);
#endif
}
half val1 = __low2half(reduced_val1);
reducer.reduce(__high2half(reduced_val1), &val1);
half val2 = __low2half(reduced_val2);
reducer.reduce(__high2half(reduced_val2), &val2);
half2 val = __halves2half2(val1, val2);
if ((threadIdx.x & (warpSize - 1)) == 0) {
half* loc = output + row;
atomicReduce((half2*)loc, val, reducer);
}
}
}
}
#endif // EIGEN_HAS_CUDA_FP16
template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
struct InnerReductionLauncher {
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) {
assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device");
return true;
}
};
// Specialization for float and double
template <typename Self, typename Op, typename OutputType, bool PacketAccess>
struct InnerReductionLauncher<
Self, Op, OutputType, PacketAccess,
typename internal::enable_if<
internal::is_same<float, OutputType>::value ||
internal::is_same<double, OutputType>::value,
void>::type> {
static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index;
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
const int block_size = 256;
const int num_per_thread = 128;
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
if (num_blocks > 1) {
// We initialize the outputs outside the reduction kernel when we can't be sure that there
// won't be a race conditions between multiple thread blocks.
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / 1024;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
LAUNCH_CUDA_KERNEL((ReductionInitKernel<OutputType, Index>),
num_blocks, 1024, 0, device, reducer.initialize(),
num_preserved_vals, output);
}
LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
return false;
}
};
#ifdef EIGEN_HAS_CUDA_FP16
template <typename Self, typename Op>
struct InnerReductionLauncher<Self, Op, Eigen::half, false> {
static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) {
assert(false && "Should not be called since there is no packet accessor");
return true;
}
};
template <typename Self, typename Op>
struct InnerReductionLauncher<Self, Op, Eigen::half, true> {
static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index;
if (num_preserved_vals % 2 != 0) {
// Not supported yet, revert to the slower code path
return true;
}
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
const int block_size = /*256*/128;
const int num_per_thread = /*128*/64;
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
if (num_blocks > 1) {
// We initialize the outputs outside the reduction kernel when we can't be sure that there
// won't be a race conditions between multiple thread blocks.
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / 1024;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
1, 1, 0, device, reducer, self, num_preserved_vals, output);
}
LAUNCH_CUDA_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
return false;
}
};
#endif // EIGEN_HAS_CUDA_FP16
template <typename Self, typename Op>
struct InnerReducer<Self, Op, GpuDevice> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats and half floats.
#ifdef EIGEN_HAS_CUDA_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value ||
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
#else // EIGEN_HAS_CUDA_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value);
#endif // EIGEN_HAS_CUDA_FP16
template <typename OutputType>
static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
const Index num_coeffs = array_prod(self.m_impl.dimensions());
// Don't crash when we're called with an input tensor of size 0.
if (num_coeffs == 0) {
return true;
}
// It's faster to use the usual code.
if (num_coeffs_to_reduce <= 128) {
return true;
}
return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
}
};
template <int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
typename Self::CoeffReturnType* output) {
const Index num_threads = blockDim.x * gridDim.x;
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
// Initialize the output values if they weren't initialized by the ReductionInitKernel
if (gridDim.x == 1) {
for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
output[i] = reducer.initialize();
}
__syncthreads();
}
// Do the reduction.
const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread);
for (Index i = thread_id; i < max_iter; i += num_threads) {
const Index input_col = i % num_preserved_coeffs;
const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
typename Self::CoeffReturnType reduced_val = reducer.initialize();
const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
for (Index j = input_row; j < max_row; j++) {
typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
reducer.reduce(val, &reduced_val);
}
atomicReduce(&(output[input_col]), reduced_val, reducer);
}
}
template <typename Self, typename Op>
struct OuterReducer<Self, Op, GpuDevice> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats.
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value);
template <typename Device, typename OutputType>
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
assert(false && "Should only be called to reduce doubles or floats on a gpu device");
return true;
}
static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index;
// It's faster to use the usual code.
if (num_coeffs_to_reduce <= 32) {
return true;
}
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
const int block_size = 256;
const int num_per_thread = 16;
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
if (num_blocks > 1) {
// We initialize the outputs in the reduction kernel itself when we don't have to worry
// about race conditions between multiple thread blocks.
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / 1024;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
num_blocks, 1024, 0, device, reducer.initialize(),
num_preserved_vals, output);
}
LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
return false;
}
};
#endif // defined(EIGEN_USE_GPU) && defined(__CUDACC__)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
|