aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
blob: c33d54d6ecacbc76b67c24a0c52ff82ff28a7f2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H

namespace Eigen {
namespace internal {


#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
// Full reducers for GPU, don't vectorize for now

// Reducer function that enables multiple cuda thread to safely accumulate at the same
// output address. It basically reads the current value of the output variable, and
// attempts to update it with the new value. If in the meantime another cuda thread
// updated the content of the output address it will try again.
template <typename T, typename R>
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
#if __CUDA_ARCH__ >= 300
  if (sizeof(T) == 4)
  {
    unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
    unsigned int newval = oldval;
    reducer.reduce(accum, reinterpret_cast<T*>(&newval));
    if (newval == oldval) {
      return;
    }
    unsigned int readback;
    while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
      oldval = readback;
      newval = oldval;
      reducer.reduce(accum, reinterpret_cast<T*>(&newval));
      if (newval == oldval) {
        return;
      }
    }
  }
  else if (sizeof(T) == 8) {
    unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
    unsigned long long newval = oldval;
    reducer.reduce(accum, reinterpret_cast<T*>(&newval));
    if (newval == oldval) {
      return;
    }
    unsigned long long readback;
    while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
      oldval = readback;
      newval = oldval;
      reducer.reduce(accum, reinterpret_cast<T*>(&newval));
      if (newval == oldval) {
        return;
      }
    }
  }
  else {
    assert(0 && "Wordsize not supported");
  }
#else
  assert(0 && "Shouldn't be called on unsupported device");
#endif
}

template <typename T>
__device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
#if __CUDA_ARCH__ >= 300
  atomicAdd(output, accum);
#else
  assert(0 && "Shouldn't be called on unsupported device");
#endif
}


template <typename CoeffType, typename Index>
__global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) {
  const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
  const Index num_threads = blockDim.x * gridDim.x;
  for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
    output[i] = val;
  }
}

template <int BlockSize, int NumPerThread, typename Self,
          typename Reducer, typename Index>
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
                                    typename Self::CoeffReturnType* output) {
  const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;

  // Initialize the output value if it wasn't initialized by the ReductionInitKernel
  if (gridDim.x == 1 && first_index == 0) {
    *output = reducer.initialize();
  }

  typename Self::CoeffReturnType accum = reducer.initialize();
  Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
  for (Index i = 0; i < max_iter; i+=BlockSize) {
    const Index index = first_index + i;
    eigen_assert(index < num_coeffs);
    typename Self::CoeffReturnType val = input.m_impl.coeff(index);
    reducer.reduce(val, &accum);
  }

#pragma unroll
  for (int offset = warpSize/2; offset > 0; offset /= 2) {
    reducer.reduce(__shfl_down(accum, offset), &accum);
  }

  if ((threadIdx.x & (warpSize - 1)) == 0) {
    atomicReduce(output, accum, reducer);
  }
}


template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
  // Unfortunately nvidia doesn't support well exotic types such as complex,
  // so reduce the scope of the optimized version of the code to the simple case
  // of floats.
  static const bool HasOptimizedImplementation = !Op::IsStateful &&
                                                 internal::is_same<typename Self::CoeffReturnType, float>::value;

  template <typename OutputType>
  static EIGEN_DEVICE_FUNC void run(const Self&, Op&, const GpuDevice&, OutputType*) {
    assert(false && "Should only be called on floats");
  }

  static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
    typedef typename Self::Index Index;

    const Index num_coeffs = array_prod(self.m_impl.dimensions());
    const int block_size = 256;
    const int num_per_thread = 128;
    const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));

    if (num_blocks > 1) {
      // We initialize the outputs outside the reduction kernel when we can't be sure that there
      // won't be a race conditions between multiple thread blocks.
      LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
                         1, 32, 0, device, reducer.initialize(), 1, output);
    }

    LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
  }
};


template <int NumPerThread, typename Self,
          typename Reducer, typename Index>
__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
                                         typename Self::CoeffReturnType* output) {
  eigen_assert(blockDim.y == 1);
  eigen_assert(blockDim.z == 1);
  eigen_assert(gridDim.y == 1);
  eigen_assert(gridDim.z == 1);

  const int unroll_times = 16;
  eigen_assert(NumPerThread % unroll_times == 0);

  const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
  const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;

  const Index num_threads = blockDim.x * gridDim.x;
  const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;

  // Initialize the output values if they weren't initialized by the ReductionInitKernel
  if (gridDim.x == 1) {
    for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
      output[i] = reducer.initialize();
    }
  }

  for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
    const Index row = i / input_col_blocks;

    if (row < num_preserved_coeffs) {
      const Index col_block = i % input_col_blocks;
      const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;

      float reduced_val = reducer.initialize();

      for (Index j = 0; j < NumPerThread; j += unroll_times) {
        const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
        if (last_col >= num_coeffs_to_reduce) {
          for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col +=blockDim.x) {
            const float val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
            reducer.reduce(val, &reduced_val);
          }
          break;
        } else {
          // Faster version of the loop with no branches after unrolling.
#pragma unroll
          for (int k = 0; k < unroll_times; ++k) {
            const Index col = col_begin + blockDim.x * (j + k);
            reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
          }
        }
      }

#pragma unroll
      for (int offset = warpSize/2; offset > 0; offset /= 2) {
        reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
      }

      if ((threadIdx.x & (warpSize - 1)) == 0) {
        atomicReduce(&(output[row]), reduced_val, reducer);
      }
    }

    __syncthreads();
  }
}

template <typename Self, typename Op>
struct InnerReducer<Self, Op, GpuDevice> {
  // Unfortunately nvidia doesn't support well exotic types such as complex,
  // so reduce the scope of the optimized version of the code to the simple case
  // of floats.
  static const bool HasOptimizedImplementation = !Op::IsStateful &&
                                                 internal::is_same<typename Self::CoeffReturnType, float>::value;

  template <typename Device, typename OutputType>
  static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
    assert(false && "Should only be called to reduce floats on a gpu device");
    return true;
  }

  static EIGEN_DEVICE_FUNC bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
    typedef typename Self::Index Index;

    // It's faster to use the usual code.
    if (num_coeffs_to_reduce <= 32) {
      return true;
    }

    const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
    const int block_size = 256;
    const int num_per_thread = 128;
    const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
    const int max_blocks = device.getNumCudaMultiProcessors() *
                           device.maxCudaThreadsPerMultiProcessor() / block_size;
    const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);

    if (num_blocks > 1) {
      // We initialize the outputs outside the reduction kernel when we can't be sure that there
      // won't be a race conditions between multiple thread blocks.
      const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
      const int max_blocks = device.getNumCudaMultiProcessors() *
                           device.maxCudaThreadsPerMultiProcessor() / 1024;
      const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
      LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
                         num_blocks, 1024, 0, device, reducer.initialize(),
                         num_preserved_vals, output);
    }

    LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);

    return false;
  }
};


template <int NumPerThread, typename Self,
          typename Reducer, typename Index>
__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
                                     typename Self::CoeffReturnType* output) {
  const Index num_threads = blockDim.x * gridDim.x;
  const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
  // Initialize the output values if they weren't initialized by the ReductionInitKernel
  if (gridDim.x == 1) {
    for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
      output[i] = reducer.initialize();
    }
  }

  // Do the reduction.
  const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread);
  for (Index i = thread_id; i < max_iter; i += num_threads) {
    const Index input_col = i % num_preserved_coeffs;
    const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
    typename Self::CoeffReturnType reduced_val = reducer.initialize();
    const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
    for (Index j = input_row; j < max_row; j++) {
      typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
      reducer.reduce(val, &reduced_val);
    }
    atomicReduce(&(output[input_col]), reduced_val, reducer);
  }
}


template <typename Self, typename Op>
struct OuterReducer<Self, Op, GpuDevice> {
  // Unfortunately nvidia doesn't support well exotic types such as complex,
  // so reduce the scope of the optimized version of the code to the simple case
  // of floats.
  static const bool HasOptimizedImplementation = !Op::IsStateful &&
                                                 internal::is_same<typename Self::CoeffReturnType, float>::value;

  template <typename Device, typename OutputType>
  static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
    assert(false && "Should only be called to reduce floats on a gpu device");
    return true;
  }

  static EIGEN_DEVICE_FUNC bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
    typedef typename Self::Index Index;

    // It's faster to use the usual code.
    if (num_coeffs_to_reduce <= 32) {
      return true;
    }

     const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
    const int block_size = 256;
    const int num_per_thread = 16;
    const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
    const int max_blocks = device.getNumCudaMultiProcessors() *
                           device.maxCudaThreadsPerMultiProcessor() / block_size;
    const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);

    if (num_blocks > 1) {
      // We initialize the outputs in the reduction kernel itself when we don't have to worry
      // about race conditions between multiple thread blocks.
      const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
      const int max_blocks = device.getNumCudaMultiProcessors() *
                             device.maxCudaThreadsPerMultiProcessor() / 1024;
      const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
      LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
                         num_blocks, 1024, 0, device, reducer.initialize(),
                         num_preserved_vals, output);
    }

    LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);

    return false;
  }
};

#endif


} // end namespace internal
} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H