aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
blob: 69079805d702531d746c7c8894d2850755783e8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
// Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H

// clang is incompatible with the CUDA syntax wrt making a kernel a class friend,
// so we'll use a macro to make clang happy.
#ifndef KERNEL_FRIEND
#if defined(__clang__) && defined(__CUDA__)
#define KERNEL_FRIEND friend __global__
#else
#define KERNEL_FRIEND friend
#endif
#endif


namespace Eigen {


/** \class TensorReduction
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor reduction class.
  *
  */

namespace internal {
  template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ >
  struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
 : traits<XprType>
{
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::Scalar Scalar;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
  static const int Layout = XprTraits::Layout;
  typedef typename XprTraits::PointerType PointerType;

  template <class T> struct MakePointer {
    // Intermediate typedef to workaround MSVC issue.
    typedef MakePointer_<T> MakePointerT;
    typedef typename MakePointerT::Type Type;
  };
};

template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
{
  typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
};

template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
{
  typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
};


template <typename OutputDims> struct DimInitializer {
  template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
  static void run(const InputDims& input_dims,
                  const array<bool, internal::array_size<InputDims>::value>& reduced,
                  OutputDims* output_dims, ReducedDims* reduced_dims) {
    const int NumInputDims = internal::array_size<InputDims>::value;
    int outputIndex = 0;
    int reduceIndex = 0;
    for (int i = 0; i < NumInputDims; ++i) {
      if (reduced[i]) {
        (*reduced_dims)[reduceIndex] = input_dims[i];
        ++reduceIndex;
      } else {
        (*output_dims)[outputIndex] = input_dims[i];
        ++outputIndex;
      }
    }
  }
};

template <> struct DimInitializer<Sizes<> > {
  template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
  static void run(const InputDims& input_dims, const array<bool, Rank>&,
                  Sizes<>*, array<Index, Rank>* reduced_dims) {
    const int NumInputDims = internal::array_size<InputDims>::value;
    for (int i = 0; i < NumInputDims; ++i) {
      (*reduced_dims)[i] = input_dims[i];
    }
  }
};


template <typename ReducedDims, int NumTensorDims, int Layout>
struct are_inner_most_dims {
  static const bool value = false;
};
template <typename ReducedDims, int NumTensorDims, int Layout>
struct preserve_inner_most_dims {
  static const bool value = false;
};

#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
template <typename ReducedDims, int NumTensorDims>
struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
  static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
  static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
  static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
  static const bool value = tmp1 & tmp2 & tmp3;
};
template <typename ReducedDims, int NumTensorDims>
struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
  static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
  static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
  static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
  static const bool value = tmp1 & tmp2 & tmp3;

};
template <typename ReducedDims, int NumTensorDims>
struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
  static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
  static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
  static const bool value = tmp1 & tmp2;

};
template <typename ReducedDims, int NumTensorDims>
struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
  static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
  static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
  static const bool value = tmp1 & tmp2;
};
#endif


template <int DimIndex, typename Self, typename Op>
struct GenericDimReducer {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
    EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
    for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
      const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
      GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
    }
  }
};
template <typename Self, typename Op>
struct GenericDimReducer<0, Self, Op> {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
    for (int j = 0; j < self.m_reducedDims[0]; ++j) {
      const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
      reducer.reduce(self.m_impl.coeff(input), accum);
    }
  }
};
template <typename Self, typename Op>
struct GenericDimReducer<-1, Self, Op> {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) {
    reducer.reduce(self.m_impl.coeff(index), accum);
  }
};

template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct InnerMostDimReducer {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
    typename Self::CoeffReturnType accum = reducer.initialize();
    for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
      reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
    }
    return reducer.finalize(accum);
  }
};

template <typename Self, typename Op>
struct InnerMostDimReducer<Self, Op, true> {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
    const int packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
    const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
    typename Self::PacketReturnType p = reducer.template initializePacket<typename Self::PacketReturnType>();
    for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
      reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &p);
    }
    typename Self::CoeffReturnType accum = reducer.initialize();
    for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
      reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
    }
    return reducer.finalizeBoth(accum, p);
  }
};

template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct InnerMostDimPreserver {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
    eigen_assert(false && "should never be called");
  }
};

template <int DimIndex, typename Self, typename Op>
struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
    EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
    for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
      const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
      InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
    }
  }
};

template <typename Self, typename Op>
struct InnerMostDimPreserver<0, Self, Op, true> {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
    for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
      const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
      reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
    }
  }
};
template <typename Self, typename Op>
struct InnerMostDimPreserver<-1, Self, Op, true> {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
    eigen_assert(false && "should never be called");
  }
};

// Default full reducer
template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct FullReducer {
  static const bool HasOptimizedImplementation = false;

  static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) {
    const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
    *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
  }
};


#ifdef EIGEN_USE_THREADS
// Multithreaded full reducers
template <typename Self, typename Op,
          bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct FullReducerShard {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
                  typename Self::Index numValuesToReduce, Op& reducer,
                  typename Self::CoeffReturnType* output) {
    *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
        self, firstIndex, numValuesToReduce, reducer);
  }
};

// Multithreaded full reducer
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
  static const bool HasOptimizedImplementation = !Op::IsStateful;
  static const int PacketSize =
      unpacket_traits<typename Self::PacketReturnType>::size;

  // launch one reducer per thread and accumulate the result.
  static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
                  typename Self::CoeffReturnType* output) {
    typedef typename Self::Index Index;
    const Index num_coeffs = array_prod(self.m_impl.dimensions());
    if (num_coeffs == 0) {
      *output = reducer.finalize(reducer.initialize());
      return;
    }
    const TensorOpCost cost =
        self.m_impl.costPerCoeff(Vectorizable) +
        TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
                     PacketSize);
    const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
        num_coeffs, cost, device.numThreads());
    if (num_threads == 1) {
      *output =
          InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
      return;
    }
    const Index blocksize =
        std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
    const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
    eigen_assert(num_coeffs >= numblocks * blocksize);

    Barrier barrier(internal::convert_index<unsigned int>(numblocks));
    MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
    for (Index i = 0; i < numblocks; ++i) {
      device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
                                  self, i * blocksize, blocksize, reducer,
                                  &shards[i]);
    }
    typename Self::CoeffReturnType finalShard;
    if (numblocks * blocksize < num_coeffs) {
      finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
          self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
          reducer);
    } else {
      finalShard = reducer.initialize();
    }
    barrier.Wait();

    for (Index i = 0; i < numblocks; ++i) {
      reducer.reduce(shards[i], &finalShard);
    }
    *output = reducer.finalize(finalShard);
  }
};

#endif


// Default inner reducer
template <typename Self, typename Op, typename Device>
struct InnerReducer {
  static const bool HasOptimizedImplementation = false;

  EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
    eigen_assert(false && "Not implemented");
    return true;
  }
};

// Default outer reducer
template <typename Self, typename Op, typename Device>
struct OuterReducer {
  static const bool HasOptimizedImplementation = false;

  EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
    eigen_assert(false && "Not implemented");
    return true;
  }
};


#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
template <int B, int N, typename S, typename R, typename I>
__global__ void FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*);


#ifdef EIGEN_HAS_CUDA_FP16
template <typename S, typename R, typename I>
__global__ void ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
template <int B, int N, typename S, typename R, typename I>
__global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
template <int NPT, typename S, typename R, typename I>
__global__ void InnerReductionKernelHalfFloat(R, const S, I, I, half*);

#endif

template <int NPT, typename S, typename R, typename I>
__global__ void InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);

template <int NPT, typename S, typename R, typename I>
__global__ void OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
#endif

}  // end namespace internal


template <typename Op, typename Dims, typename XprType,  template <class> class MakePointer_>
class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
  public:
    typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
    typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
    typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
    typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
    typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
    typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
    { }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
    { }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    const XprType& expression() const { return m_expr; }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    const Dims& dims() const { return m_dims; }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    const Op& reducer() const { return m_reducer; }

  protected:
    typename XprType::Nested m_expr;
    const Dims m_dims;
    const Op m_reducer;
};


// Eval as rvalue
template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
{
  typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType;
  typedef typename XprType::Index Index;
  typedef ArgType ChildType;
  typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
  static const int NumInputDims = internal::array_size<InputDimensions>::value;
  static const int NumReducedDims = internal::array_size<Dims>::value;
  static const int NumOutputDims = NumInputDims - NumReducedDims;
  typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions;
  typedef typename XprType::Scalar Scalar;
  typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
  static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
  typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;

  enum {
    IsAligned = false,
    PacketAccess = Self::InputPacketAccess && Op::PacketAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,  // to be implemented
    RawAccess = false
  };

  static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
  static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
  static const bool RunningFullReduction = (NumOutputDims==0);

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device)
#if defined(EIGEN_USE_SYCL)
      , m_xpr_dims(op.dims())
#endif
  {
    EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
    EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
                        YOU_MADE_A_PROGRAMMING_MISTAKE);

    // Build the bitmap indicating if an input dimension is reduced or not.
    for (int i = 0; i < NumInputDims; ++i) {
      m_reduced[i] = false;
    }
    for (int i = 0; i < NumReducedDims; ++i) {
      eigen_assert(op.dims()[i] >= 0);
      eigen_assert(op.dims()[i] < NumInputDims);
      m_reduced[op.dims()[i]] = true;
    }

    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
    internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);

    // Precompute output strides.
    if (NumOutputDims > 0) {
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        m_outputStrides[0] = 1;
        for (int i = 1; i < NumOutputDims; ++i) {
          m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
        }
      } else {
        m_outputStrides.back() = 1;
        for (int i = NumOutputDims - 2; i >= 0; --i) {
          m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
        }
      }
    }

    // Precompute input strides.
    if (NumInputDims > 0) {
      array<Index, NumInputDims> input_strides;
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        input_strides[0] = 1;
        for (int i = 1; i < NumInputDims; ++i) {
          input_strides[i] = input_strides[i-1] * input_dims[i-1];
        }
      } else {
        input_strides.back() = 1;
        for (int i = NumInputDims - 2; i >= 0; --i) {
          input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
        }
      }

      int outputIndex = 0;
      int reduceIndex = 0;
      for (int i = 0; i < NumInputDims; ++i) {
        if (m_reduced[i]) {
          m_reducedStrides[reduceIndex] = input_strides[i];
          ++reduceIndex;
        } else {
          m_preservedStrides[outputIndex] = input_strides[i];
          ++outputIndex;
        }
      }
    }

    // Special case for full reductions
    if (NumOutputDims == 0) {
      m_preservedStrides[0] = internal::array_prod(input_dims);
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }

  EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool evalSubExprsIfNeeded(typename MakePointer_<CoeffReturnType>::Type data) {
    m_impl.evalSubExprsIfNeeded(NULL);

    // Use the FullReducer if possible.
    if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
        internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
        ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
         !RunningOnGPU))) {
      bool need_assign = false;
      if (!data) {
        m_result = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType)));
        data = m_result;
        need_assign = true;
      }
      Op reducer(m_reducer);
      internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
      return need_assign;
    }
    else if(RunningOnSycl){
      const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
      const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
      if (!data) {
        data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
        m_result = data;
      }
      Op reducer(m_reducer);
      internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
      return (m_result != NULL);
    }

    // Attempt to use an optimized reduction.
    else if (RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) {
      bool reducing_inner_dims = true;
      for (int i = 0; i < NumReducedDims; ++i) {
        if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
          reducing_inner_dims &= m_reduced[i];
        } else {
          reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
        }
      }
      if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
          (reducing_inner_dims || ReducingInnerMostDims)) {
        const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
        const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
        if (!data) {
          if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) {
            data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
            m_result = data;
          }
          else {
            return true;
          }
        }
        Op reducer(m_reducer);
        if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
          if (m_result) {
            m_device.deallocate(m_result);
            m_result = NULL;
          }
          return true;
        } else {
          return (m_result != NULL);
        }
      }

      bool preserving_inner_dims = true;
      for (int i = 0; i < NumReducedDims; ++i) {
        if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
          preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
        } else {
          preserving_inner_dims &= m_reduced[i];
        }
      }
      if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
          preserving_inner_dims) {
        const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
        const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
        if (!data) {
          if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) {
            data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
            m_result = data;
          }
          else {
            return true;
          }
        }
        Op reducer(m_reducer);
        if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
          if (m_result) {
            m_device.deallocate(m_result);
            m_result = NULL;
          }
          return true;
        } else {
          return (m_result != NULL);
        }
      }
    }
    return true;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
    if (m_result) {
      m_device.deallocate(m_result);
      m_result = NULL;
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    if ((RunningOnSycl || RunningFullReduction || RunningOnGPU) && m_result) {
      return *(m_result + index);
    }
    Op reducer(m_reducer);
    if (ReducingInnerMostDims || RunningFullReduction) {
      const Index num_values_to_reduce =
        (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
      return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
                                                             num_values_to_reduce, reducer);
    } else {
      typename Self::CoeffReturnType accum = reducer.initialize();
      internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
      return reducer.finalize(accum);
    }
  }

  // TODO(bsteiner): provide a more efficient implementation.
  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions())));

    if (RunningOnGPU && m_result) {
      return internal::pload<PacketReturnType>(m_result + index);
    }

    EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
    if (ReducingInnerMostDims) {
      const Index num_values_to_reduce =
        (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
      const Index firstIndex = firstInput(index);
      for (Index i = 0; i < PacketSize; ++i) {
        Op reducer(m_reducer);
        values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
                                                                    num_values_to_reduce, reducer);
      }
    } else if (PreservingInnerMostDims) {
      const Index firstIndex = firstInput(index);
      const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
      // TBD: extend this the the n innermost dimensions that we preserve.
      if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
        Op reducer(m_reducer);
        typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
        internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
        return reducer.finalizePacket(accum);
      } else {
        for (int i = 0; i < PacketSize; ++i) {
          values[i] = coeff(index + i);
        }
      }
    } else {
      for (int i = 0; i < PacketSize; ++i) {
        values[i] = coeff(index + i);
      }
    }
    PacketReturnType rslt = internal::pload<PacketReturnType>(values);
    return rslt;
  }

  // Must be called after evalSubExprsIfNeeded().
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    if (RunningFullReduction && m_result) {
      return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
    } else {
      const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
      const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
      return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
          TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
    }
  }

  EIGEN_DEVICE_FUNC typename MakePointer_<CoeffReturnType>::Type data() const { return m_result; }

#if defined(EIGEN_USE_SYCL)
  const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
  const Device& device() const { return m_device; }
  const Dims& xprDims() const { return m_xpr_dims; }
#endif

  private:
  template <int, typename, typename> friend struct internal::GenericDimReducer;
  template <typename, typename, bool> friend struct internal::InnerMostDimReducer;
  template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
  template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
#ifdef EIGEN_USE_THREADS
  template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
#endif
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
  template <int B, int N, typename S, typename R, typename I> KERNEL_FRIEND void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*);
#ifdef EIGEN_HAS_CUDA_FP16
  template <typename S, typename R, typename I> KERNEL_FRIEND void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
  template <int B, int N, typename S, typename R, typename I> KERNEL_FRIEND void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
  template <int NPT, typename S, typename R, typename I> KERNEL_FRIEND void internal::InnerReductionKernelHalfFloat(R, const S, I, I, half*);
#endif
  template <int NPT, typename S, typename R, typename I> KERNEL_FRIEND void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);

  template <int NPT, typename S, typename R, typename I> KERNEL_FRIEND void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
#endif

#if defined(EIGEN_USE_SYCL)
 template < typename HostExpr_, typename FunctorExpr_, typename Tuple_of_Acc_, typename Dims_, typename Op_, typename Index_> friend class TensorSycl::internal::ReductionFunctor;
 template<typename CoeffReturnType_ ,typename OutAccessor_, typename HostExpr_, typename FunctorExpr_, typename Op_, typename Dims_, typename Index_, typename TupleType_> friend class TensorSycl::internal::FullReductionKernelFunctor;
#endif


  template <typename S, typename O, typename D> friend struct internal::InnerReducer;

  // Returns the Index in the input tensor of the first value that needs to be
  // used to compute the reduction at output index "index".
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
    if (ReducingInnerMostDims) {
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        return index * m_preservedStrides[0];
      } else {
        return index * m_preservedStrides[NumPreservedStrides - 1];
      }
    }
    // TBD: optimize the case where we preserve the innermost dimensions.
    Index startInput = 0;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumOutputDims - 1; i > 0; --i) {
        // This is index_i in the output tensor.
        const Index idx = index / m_outputStrides[i];
        startInput += idx * m_preservedStrides[i];
        index -= idx * m_outputStrides[i];
      }
      if (PreservingInnerMostDims) {
        eigen_assert(m_preservedStrides[0] == 1);
        startInput += index;
      } else {
        startInput += index * m_preservedStrides[0];
      }
    } else {
      for (int i = 0; i < NumOutputDims - 1; ++i) {
        // This is index_i in the output tensor.
        const Index idx = index / m_outputStrides[i];
        startInput += idx * m_preservedStrides[i];
        index -= idx * m_outputStrides[i];
      }
      if (PreservingInnerMostDims) {
        eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
        startInput += index;
      } else {
        startInput += index * m_preservedStrides[NumPreservedStrides - 1];
      }
    }
    return startInput;
  }

  // Bitmap indicating if an input dimension is reduced or not.
  array<bool, NumInputDims> m_reduced;
  // Dimensions of the output of the operation.
  Dimensions m_dimensions;
  // Precomputed strides for the output tensor.
  array<Index, NumOutputDims> m_outputStrides;
  // Subset of strides of the input tensor for the non-reduced dimensions.
  // Indexed by output dimensions.
  static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
  array<Index, NumPreservedStrides> m_preservedStrides;

  // Subset of strides of the input tensor for the reduced dimensions.
  // Indexed by reduced dimensions.
  array<Index, NumReducedDims> m_reducedStrides;
  // Size of the input dimensions that are reduced.
  // Indexed by reduced dimensions.
  array<Index, NumReducedDims> m_reducedDims;

  // Evaluator for the input expression.
  TensorEvaluator<ArgType, Device> m_impl;

  // Operation to apply for computing the reduction.
  Op m_reducer;

  // For full reductions
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
  static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
  static const bool RunningOnSycl = false;
#elif defined(EIGEN_USE_SYCL)
static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
static const bool RunningOnGPU = false;
#else
  static const bool RunningOnGPU = false;
  static const bool RunningOnSycl = false;
#endif
  typename MakePointer_<CoeffReturnType>::Type m_result;

  const Device& m_device;

#if defined(EIGEN_USE_SYCL)
  const Dims m_xpr_dims;
#endif
};

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H