aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h
blob: ea97cf185f23baf15d1b18796001eb21ef780880 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
#define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H

namespace Eigen {

/** \class TensorReshaping
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor reshaping class.
  *
  *
  */
namespace internal {
template<typename NewDimensions, typename XprType>
struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = array_size<NewDimensions>::value;
  static const int Layout = XprTraits::Layout;
  typedef typename XprTraits::PointerType PointerType;
};

template<typename NewDimensions, typename XprType>
struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense>
{
  typedef const TensorReshapingOp<NewDimensions, XprType>EIGEN_DEVICE_REF type;
};

template<typename NewDimensions, typename XprType>
struct nested<TensorReshapingOp<NewDimensions, XprType>, 1, typename eval<TensorReshapingOp<NewDimensions, XprType> >::type>
{
  typedef TensorReshapingOp<NewDimensions, XprType> type;
};

}  // end namespace internal



template<typename NewDimensions, typename XprType>
class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors>
{
  public:
  typedef TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> Base;
  typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
  typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims)
      : m_xpr(expr), m_dims(dims) {}

    EIGEN_DEVICE_FUNC
    const NewDimensions& dimensions() const { return m_dims; }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

    EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorReshapingOp)

  protected:
    typename XprType::Nested m_xpr;
    const NewDimensions m_dims;
};


// Eval as rvalue
template<typename NewDimensions, typename ArgType, typename Device>
struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
{
  typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
  typedef NewDimensions Dimensions;

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;
  typedef StorageMemory<typename internal::remove_const<CoeffReturnType>::type, Device> ConstCastStorage;

  static const int NumOutputDims = internal::array_size<Dimensions>::value;
  static const int NumInputDims  = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;

  enum ReshapingKind {
    // We do not use layout information to determine reshaping kind.
    // Depending on the layout `N` can be inner or outer dimension.
    OneByN = 0,  // expr.reshape(1, N)
    NByOne = 1,  // expr.reshape(N, 1)
    Runtime = 2  // Reshape dimensions are dynamic (specified at runtime).
  };

  // clang-format off
  static const ReshapingKind kind =
#if defined(EIGEN_HAS_INDEX_LIST)
        (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/0, /*value=*/1)) ? OneByN
      : (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/1, /*value=*/1)) ? NByOne
      : Runtime;
#else
        Runtime;
#endif
  // clang-format on

  enum {
    IsAligned         = TensorEvaluator<ArgType, Device>::IsAligned,
    PacketAccess      = TensorEvaluator<ArgType, Device>::PacketAccess,
    // For trivial reshapes with raw access to underlying data we will provide
    // zero overhead block access.
    // TODO(ezhulenev): Consider adding block access without raw access?
    BlockAccess       = TensorEvaluator<ArgType, Device>::RawAccess &&
                        NumInputDims > 0 && NumOutputDims > 0,
    PreferBlockAccess = false,
    Layout            = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess       = false,  // to be implemented
    RawAccess         = TensorEvaluator<ArgType, Device>::RawAccess
  };

  typedef typename internal::remove_const<Scalar>::type ScalarNoConst;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<NumOutputDims, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

  typedef
      typename internal::TensorMaterializedBlock<ScalarNoConst, NumOutputDims,
                                                 Layout, Index>
          TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_dimensions(op.dimensions())
  {
    // The total size of the reshaped tensor must be equal to the total size
    // of the input tensor.
    eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions()));
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType data, EvalSubExprsCallback done) {
    m_impl.evalSubExprsIfNeededAsync(data, std::move(done));
  }
#endif

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
    return m_impl.evalSubExprsIfNeeded(data);
  }
  EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    return m_impl.coeff(index);
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    return m_impl.template packet<LoadMode>(index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    return m_impl.costPerCoeff(vectorized);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  internal::TensorBlockResourceRequirements getResourceRequirements() const {
    return internal::TensorBlockResourceRequirements::any();
  }

  // required in block(OutputTensorBlock* output_block) const
  // For C++03 compatibility this must be defined outside the method
  struct BlockIteratorState {
    Index stride;
    Index span;
    Index size;
    Index count;
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
          bool /*root_of_expr_ast*/ = false) const {
    eigen_assert(m_impl.data() != NULL);
    eigen_assert((kind == Runtime) ||
                 (kind == OneByN && desc.dimensions()[0] == 1) ||
                 (kind == NByOne && desc.dimensions()[1] == 1));

    if (kind == OneByN || kind == NByOne) {
      // We can guarantee at compile time that block is just a contiguous slice
      // of the underlying expression memory buffer.
      return TensorBlock(internal::TensorBlockKind::kView,
                           m_impl.data() + desc.offset(), desc.dimensions());
    } else {
      // This will do additional runtime checks, and in the end it might be also
      // a view, or it might be a block materialized in the temporary buffer.
      return TensorBlock::materialize(m_impl.data(), m_dimensions, desc,
                                        scratch);
    }
  }

  EIGEN_DEVICE_FUNC typename Storage::Type data() const {
    return constCast(m_impl.data());
  }

  EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }

  #ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_impl.bind(cgh);
  }
  #endif
 protected:
  TensorEvaluator<ArgType, Device> m_impl;
  NewDimensions m_dimensions;
};


// Eval as lvalue
template<typename NewDimensions, typename ArgType, typename Device>
  struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device>
  : public TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>

{
  typedef TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> Base;
  typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
  typedef NewDimensions Dimensions;

  enum {
    IsAligned         = TensorEvaluator<ArgType, Device>::IsAligned,
    PacketAccess      = TensorEvaluator<ArgType, Device>::PacketAccess,
    BlockAccess       = TensorEvaluator<ArgType, Device>::RawAccess,
    PreferBlockAccess = false,
    Layout            = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess       = false,  // to be implemented
    RawAccess         = TensorEvaluator<ArgType, Device>::RawAccess
  };

  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
    : Base(op, device)
  { }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<TensorEvaluator::NumOutputDims, Index>
      TensorBlockDesc;
  //===--------------------------------------------------------------------===//

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
  {
    return this->m_impl.coeffRef(index);
  }

  template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  void writePacket(Index index, const PacketReturnType& x)
  {
    this->m_impl.template writePacket<StoreMode>(index, x);
  }

  template <typename TensorBlock>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(
      const TensorBlockDesc& desc, const TensorBlock& block) {
    assert(this->m_impl.data() != NULL);

    typedef typename TensorBlock::XprType TensorBlockExpr;
    typedef internal::TensorBlockAssignment<
        Scalar, TensorEvaluator::NumOutputDims, TensorBlockExpr, Index>
        TensorBlockAssign;

    TensorBlockAssign::Run(
        TensorBlockAssign::target(desc.dimensions(),
                                  internal::strides<Layout>(this->dimensions()),
                                  this->m_impl.data(), desc.offset()),
        block.expr());
  }
};


/** \class TensorSlicing
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor slicing class.
  *
  *
  */
namespace internal {
template<typename StartIndices, typename Sizes, typename XprType>
struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = array_size<StartIndices>::value;
  static const int Layout = XprTraits::Layout;
  typedef typename XprTraits::PointerType PointerType;
};

template<typename StartIndices, typename Sizes, typename XprType>
struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense>
{
  typedef const TensorSlicingOp<StartIndices, Sizes, XprType>EIGEN_DEVICE_REF type;
};

template<typename StartIndices, typename Sizes, typename XprType>
struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1, typename eval<TensorSlicingOp<StartIndices, Sizes, XprType> >::type>
{
  typedef TensorSlicingOp<StartIndices, Sizes, XprType> type;
};

}  // end namespace internal



template<typename StartIndices, typename Sizes, typename XprType>
class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> >
{
  public:
  typedef TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> > Base;
  typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, const Sizes& sizes)
      : m_xpr(expr), m_indices(indices), m_sizes(sizes) {}

    EIGEN_DEVICE_FUNC
    const StartIndices& startIndices() const { return m_indices; }
    EIGEN_DEVICE_FUNC
    const Sizes& sizes() const { return m_sizes; }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

    EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorSlicingOp)

  protected:
    typename XprType::Nested m_xpr;
    const StartIndices m_indices;
    const Sizes m_sizes;
};


// Fixme: figure out the exact threshold
namespace {
template <typename Index, typename Device, bool BlockAccess> struct MemcpyTriggerForSlicing {
  EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const Device& device) : threshold_(2 * device.numThreads()) { }
  EIGEN_DEVICE_FUNC bool operator ()(Index total, Index contiguous) const {
    const bool prefer_block_evaluation = BlockAccess && total > 32*1024;
    return !prefer_block_evaluation && contiguous > threshold_;
  }

 private:
  Index threshold_;
};

// It is very expensive to start the memcpy kernel on GPU: we therefore only
// use it for large copies.
#ifdef EIGEN_USE_GPU
template <typename Index, bool BlockAccess> struct MemcpyTriggerForSlicing<Index, GpuDevice, BlockAccess>  {
  EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const GpuDevice&) { }
  EIGEN_DEVICE_FUNC bool operator ()(Index, Index contiguous) const { return contiguous > 4*1024*1024; }
};
#endif

// It is very expensive to start the memcpy kernel on GPU: we therefore only
// use it for large copies.
#ifdef EIGEN_USE_SYCL
template <typename Index, bool BlockAccess> struct MemcpyTriggerForSlicing<Index, Eigen::SyclDevice, BlockAccess>  {
  EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const SyclDevice&) { }
  EIGEN_DEVICE_FUNC bool operator ()(Index, Index contiguous) const { return contiguous > 4*1024*1024; }
};
#endif

}

// Eval as rvalue
template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
{
  typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
  static const int NumDims = internal::array_size<Sizes>::value;

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef Sizes Dimensions;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef StorageMemory<typename internal::remove_const<CoeffReturnType>::type, Device> ConstCastStorage;
  typedef typename Storage::Type EvaluatorPointerType;

  enum {
    // Alignment can't be guaranteed at compile time since it depends on the
    // slice offsets and sizes.
    IsAligned         = false,
    PacketAccess      = TensorEvaluator<ArgType, Device>::PacketAccess,
    BlockAccess       = TensorEvaluator<ArgType, Device>::BlockAccess &&
                        // FIXME: Temporary workaround for bug in slicing of bool tensors.
                        !internal::is_same<typename internal::remove_const<Scalar>::type, bool>::value,
    PreferBlockAccess = true,
    Layout            = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess       = false,
    RawAccess         = false
  };

  typedef typename internal::remove_const<Scalar>::type ScalarNoConst;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

  // Tensor slicing does not change the block type.
  typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock
      TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices())
  {
    for (Index i = 0; i < internal::array_size<Dimensions>::value; ++i) {
      eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]);
    }

    m_is_identity = true;
    bool degenerate = false;
    for (int i = 0; i < internal::array_size<Dimensions>::value; ++i) {
      eigen_assert(m_impl.dimensions()[i] >=
                   op.sizes()[i] + op.startIndices()[i]);
      if (m_impl.dimensions()[i] != op.sizes()[i] ||
          op.startIndices()[i] != 0) {
        m_is_identity = false;
      }
      if (op.sizes()[i] == 0) { // we have an empty size
        degenerate = true;
      }
    }

    // No strides for scalars.
    if (NumDims == 0) return;

    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
    const Sizes& output_dims = op.sizes();
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_inputStrides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
      }

     // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
      m_outputStrides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
        // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
        m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);      }
    } else {
      m_inputStrides[NumDims-1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
      }

     // Don't initialize m_fastOutputStrides[NumDims-1] since it won't ever be accessed.
      m_outputStrides[NumDims-1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
        // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
        m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
    m_impl.evalSubExprsIfNeeded(NULL);
    if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization
        && data && m_impl.data()) {
      Index contiguous_values = 1;
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        for (int i = 0; i < NumDims; ++i) {
          contiguous_values *= dimensions()[i];
          if (dimensions()[i] != m_impl.dimensions()[i]) {
            break;
          }
        }
      } else {
        for (int i = NumDims-1; i >= 0; --i) {
          contiguous_values *= dimensions()[i];
          if (dimensions()[i] != m_impl.dimensions()[i]) {
            break;
          }
        }
      }
      // Use memcpy if it's going to be faster than using the regular evaluation.
      const MemcpyTriggerForSlicing<Index, Device, BlockAccess> trigger(m_device);
      if (trigger(internal::array_prod(dimensions()), contiguous_values)) {
        EvaluatorPointerType src = (EvaluatorPointerType)m_impl.data();
        for (Index i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) {
          Index offset = srcCoeff(i);
          m_device.memcpy((void*)(m_device.get(data + i)), m_device.get(src+offset), contiguous_values * sizeof(Scalar));
        }
        return false;
      }
    }
    return true;
  }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType /*data*/, EvalSubExprsCallback done) {
    m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
  }
#endif  // EIGEN_USE_THREADS

  EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    if (m_is_identity) {
      return m_impl.coeff(index);
    } else {
      return m_impl.coeff(srcCoeff(index));
    }
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    const int packetSize = PacketType<CoeffReturnType, Device>::size;
    EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(index+packetSize-1 < internal::array_prod(dimensions()));

    if (m_is_identity) {
      return m_impl.template packet<LoadMode>(index);
    }

    Index inputIndices[] = {0, 0};
    Index indices[] = {index, index + packetSize - 1};
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      EIGEN_UNROLL_LOOP
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx0 = indices[0] / m_fastOutputStrides[i];
        const Index idx1 = indices[1] / m_fastOutputStrides[i];
        inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
        inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
        indices[0] -= idx0 * m_outputStrides[i];
        indices[1] -= idx1 * m_outputStrides[i];
      }
      inputIndices[0] += (indices[0] + m_offsets[0]);
      inputIndices[1] += (indices[1] + m_offsets[0]);
    } else {
      EIGEN_UNROLL_LOOP
      for (int i = 0; i < NumDims - 1; ++i) {
        const Index idx0 = indices[0] / m_fastOutputStrides[i];
        const Index idx1 = indices[1] / m_fastOutputStrides[i];
        inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
        inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
        indices[0] -= idx0 * m_outputStrides[i];
        indices[1] -= idx1 * m_outputStrides[i];
      }
      inputIndices[0] += (indices[0] + m_offsets[NumDims-1]);
      inputIndices[1] += (indices[1] + m_offsets[NumDims-1]);
    }
    if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
      PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
      return rslt;
    }
    else {
      EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
      values[0] = m_impl.coeff(inputIndices[0]);
      values[packetSize-1] = m_impl.coeff(inputIndices[1]);
      EIGEN_UNROLL_LOOP
      for (int i = 1; i < packetSize-1; ++i) {
        values[i] = coeff(index+i);
      }
      PacketReturnType rslt = internal::pload<PacketReturnType>(values);
      return rslt;
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, m_is_identity ? 1 : NumDims);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  internal::TensorBlockResourceRequirements getResourceRequirements() const {
    const size_t target_size = m_device.lastLevelCacheSize();
    return internal::TensorBlockResourceRequirements::merge(
        internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size),
        m_impl.getResourceRequirements());
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
          bool /*root_of_expr_ast*/ = false) const {
    TensorBlockDesc arg_desc = desc.WithOffset(srcCoeff(desc.offset()));
    TensorBlock block = m_impl.block(arg_desc, scratch);
    if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer();
    return block;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const {
    typename Storage::Type result = constCast(m_impl.data());
    if (result) {
      Index offset = 0;
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        for (int i = 0; i < NumDims; ++i) {
          if (m_dimensions[i] != m_impl.dimensions()[i]) {
            offset += m_offsets[i] * m_inputStrides[i];
            for (int j = i+1; j < NumDims; ++j) {
              if (m_dimensions[j] > 1) {
                return NULL;
              }
              offset += m_offsets[j] * m_inputStrides[j];
            }
            break;
          }
        }
      } else {
        for (int i = NumDims - 1; i >= 0; --i) {
          if (m_dimensions[i] != m_impl.dimensions()[i]) {
            offset += m_offsets[i] * m_inputStrides[i];
            for (int j = i-1; j >= 0; --j) {
              if (m_dimensions[j] > 1) {
                return NULL;
              }
              offset += m_offsets[j] * m_inputStrides[j];
            }
            break;
          }
        }
      }
      return result + offset;
    }
    return NULL;
  }
#ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_impl.bind(cgh);
  }
#endif

 protected:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
  {
    Index inputIndex = 0;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      EIGEN_UNROLL_LOOP
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx = index / m_fastOutputStrides[i];
        inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
        index -= idx * m_outputStrides[i];
      }
      inputIndex += (index + m_offsets[0]);
    } else {
      EIGEN_UNROLL_LOOP
      for (int i = 0; i < NumDims - 1; ++i) {
        const Index idx = index / m_fastOutputStrides[i];
        inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
        index -= idx * m_outputStrides[i];
      }
      inputIndex += (index + m_offsets[NumDims-1]);
    }
    return inputIndex;
  }

  array<Index, NumDims> m_outputStrides;
  array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
  array<Index, NumDims> m_inputStrides;
  TensorEvaluator<ArgType, Device> m_impl;
  const Device EIGEN_DEVICE_REF m_device;
  Dimensions m_dimensions;
  bool m_is_identity;
  const StartIndices m_offsets;
};


// Eval as lvalue
template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
  : public TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
{
  typedef TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> Base;
  typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
  static const int NumDims = internal::array_size<Sizes>::value;

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef Sizes Dimensions;

  enum {
    IsAligned         = false,
    PacketAccess      = TensorEvaluator<ArgType, Device>::PacketAccess,
    BlockAccess       = TensorEvaluator<ArgType, Device>::BlockAccess,
    PreferBlockAccess = true,
    Layout            = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess       = false,
    RawAccess         = (NumDims == 1) & TensorEvaluator<ArgType, Device>::RawAccess
  };

  typedef typename internal::remove_const<Scalar>::type ScalarNoConst;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
    : Base(op, device)
    { }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
  {
    if (this->m_is_identity) {
      return this->m_impl.coeffRef(index);
    } else {
      return this->m_impl.coeffRef(this->srcCoeff(index));
    }
  }

  template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  void writePacket(Index index, const PacketReturnType& x)
  {
    if (this->m_is_identity) {
      this->m_impl.template writePacket<StoreMode>(index, x);
      return;
    }

    const int packetSize = PacketType<CoeffReturnType, Device>::size;
    Index inputIndices[] = {0, 0};
    Index indices[] = {index, index + packetSize - 1};
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      EIGEN_UNROLL_LOOP
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
        const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
        inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
        inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
        indices[0] -= idx0 * this->m_outputStrides[i];
        indices[1] -= idx1 * this->m_outputStrides[i];
      }
      inputIndices[0] += (indices[0] + this->m_offsets[0]);
      inputIndices[1] += (indices[1] + this->m_offsets[0]);
    } else {
      EIGEN_UNROLL_LOOP
      for (int i = 0; i < NumDims - 1; ++i) {
        const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
        const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
        inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
        inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
        indices[0] -= idx0 * this->m_outputStrides[i];
        indices[1] -= idx1 * this->m_outputStrides[i];
      }
      inputIndices[0] += (indices[0] + this->m_offsets[NumDims-1]);
      inputIndices[1] += (indices[1] + this->m_offsets[NumDims-1]);
    }
    if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
      this->m_impl.template writePacket<StoreMode>(inputIndices[0], x);
    }
    else {
      EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
      internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
      this->m_impl.coeffRef(inputIndices[0]) = values[0];
      this->m_impl.coeffRef(inputIndices[1]) = values[packetSize-1];
      EIGEN_UNROLL_LOOP
      for (int i = 1; i < packetSize-1; ++i) {
        this->coeffRef(index+i) = values[i];
      }
    }
  }

  template<typename TensorBlock>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(
      const TensorBlockDesc& desc, const TensorBlock& block) {
    TensorBlockDesc arg_desc = desc.WithOffset(this->srcCoeff(desc.offset()));
    this->m_impl.writeBlock(arg_desc, block);
  }
};

namespace internal {
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = array_size<StartIndices>::value;
  static const int Layout = XprTraits::Layout;
  typedef typename XprTraits::PointerType PointerType;
};

template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense>
{
  typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>EIGEN_DEVICE_REF type;
};

template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >::type>
{
  typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type;
};

}  // end namespace internal


template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
class TensorStridingSlicingOp : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >
{
  public:
  typedef TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > Base;
  typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename internal::nested<TensorStridingSlicingOp>::type Nested;
  typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind;
  typedef typename internal::traits<TensorStridingSlicingOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp(
    const XprType& expr, const StartIndices& startIndices,
    const StopIndices& stopIndices, const Strides& strides)
      : m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices),
        m_strides(strides) {}

    EIGEN_DEVICE_FUNC
    const StartIndices& startIndices() const { return m_startIndices; }
    EIGEN_DEVICE_FUNC
    const StartIndices& stopIndices() const { return m_stopIndices; }
    EIGEN_DEVICE_FUNC
    const StartIndices& strides() const { return m_strides; }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

    EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorStridingSlicingOp)

  protected:
    typename XprType::Nested m_xpr;
    const StartIndices m_startIndices;
    const StopIndices m_stopIndices;
    const Strides m_strides;
};

// Eval as rvalue
template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
{
  typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
  static const int NumDims = internal::array_size<Strides>::value;
  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;
  typedef Strides Dimensions;

  enum {
    // Alignment can't be guaranteed at compile time since it depends on the
    // slice offsets and sizes.
    IsAligned = false,
    PacketAccess = false,
    BlockAccess = false,
    PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    RawAccess = false
  };

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockNotImplemented TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device),
        m_device(device),
        m_strides(op.strides())
  {
    // Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero
    DSizes<Index, NumDims> startIndicesClamped, stopIndicesClamped;
    for (ptrdiff_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
      eigen_assert(m_strides[i] != 0 && "0 stride is invalid");
      if (m_strides[i] > 0) {
        startIndicesClamped[i] =
            clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]);
        stopIndicesClamped[i] =
            clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]);
      } else {
        /* implies m_strides[i] < 0 by assert */
        startIndicesClamped[i] =
            clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1);
        stopIndicesClamped[i] =
            clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1);
      }
      m_startIndices[i] = startIndicesClamped[i];
    }

    typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
    const InputDimensions& input_dims = m_impl.dimensions();

    // check for degenerate intervals and compute output tensor shape
    bool degenerate = false;
    m_is_identity = true;
    for (int i = 0; i < NumDims; i++) {
      Index interval = stopIndicesClamped[i] - startIndicesClamped[i];
      if (interval == 0 || ((interval < 0) != (m_strides[i] < 0))) {
        m_dimensions[i] = 0;
        degenerate = true;
      } else {
        m_dimensions[i] =
            (interval / m_strides[i]) + (interval % m_strides[i] != 0 ? 1 : 0);
        eigen_assert(m_dimensions[i] >= 0);
      }
      if (m_strides[i] != 1 || interval != m_impl.dimensions()[i]) {
        m_is_identity = false;
      }
    }

    Strides output_dims = m_dimensions;

    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_inputStrides[0] = m_strides[0];
      m_offsets[0] = startIndicesClamped[0];
      Index previousDimProduct = 1;
      for (int i = 1; i < NumDims; ++i) {
        previousDimProduct *= input_dims[i-1];
        m_inputStrides[i] = previousDimProduct * m_strides[i];
        m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
      }

      // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
      m_outputStrides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
        // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
        m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
      }
    } else {
      m_inputStrides[NumDims-1] = m_strides[NumDims-1];
      m_offsets[NumDims-1] = startIndicesClamped[NumDims-1];
      Index previousDimProduct = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        previousDimProduct *= input_dims[i+1];
        m_inputStrides[i] = previousDimProduct * m_strides[i];
        m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
      }

      m_outputStrides[NumDims-1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
        // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
        m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }


  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
    m_impl.evalSubExprsIfNeeded(NULL);
    return true;
  }

  EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    if (m_is_identity) {
      return m_impl.coeff(index);
    } else {
      return m_impl.coeff(srcCoeff(index));
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, m_is_identity ? 1 : NumDims);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const {
    return NULL;
  }
#ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_impl.bind(cgh);
  }
#endif
 protected:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
  {
    Index inputIndex = 0;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      EIGEN_UNROLL_LOOP
      for (int i = NumDims - 1; i >= 0; --i) {
        const Index idx = index / m_fastOutputStrides[i];
        inputIndex += idx * m_inputStrides[i] + m_offsets[i];
        index -= idx * m_outputStrides[i];
      }
    } else {
      EIGEN_UNROLL_LOOP
      for (int i = 0; i < NumDims; ++i) {
        const Index idx = index / m_fastOutputStrides[i];
        inputIndex += idx * m_inputStrides[i] + m_offsets[i];
        index -= idx * m_outputStrides[i];
      }
    }
    return inputIndex;
  }

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) {
#ifndef SYCL_DEVICE_ONLY
    return numext::maxi(min, numext::mini(max,value));
#else
    return cl::sycl::clamp(value, min, max);
#endif
  }

  array<Index, NumDims> m_outputStrides;
  array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
  array<Index, NumDims> m_inputStrides;
  bool m_is_identity;
  TensorEvaluator<ArgType, Device> m_impl;
  const Device EIGEN_DEVICE_REF m_device;
  DSizes<Index, NumDims> m_startIndices; // clamped startIndices
  DSizes<Index, NumDims> m_dimensions;
  DSizes<Index, NumDims> m_offsets; // offset in a flattened shape
  const Strides m_strides;
};

// Eval as lvalue
template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
  : public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
{
  typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base;
  typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
  static const int NumDims = internal::array_size<Strides>::value;

  enum {
    IsAligned = false,
    PacketAccess = false,
    BlockAccess = false,
    PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
    RawAccess = false
  };

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockNotImplemented TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
    : Base(op, device)
    { }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef Strides Dimensions;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
  {
    if (this->m_is_identity) {
      return this->m_impl.coeffRef(index);
    } else {
      return this->m_impl.coeffRef(this->srcCoeff(index));
    }
  }
};


} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H