1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_MAP_H
#define EIGEN_CXX11_TENSOR_TENSOR_MAP_H
namespace Eigen {
/** \class TensorMap
* \ingroup CXX11_Tensor_Module
*
* \brief A tensor expression mapping an existing array of data.
*
*/
template<typename PlainObjectType, int Options_> class TensorMap : public TensorBase<TensorMap<PlainObjectType, Options_> >
{
public:
typedef TensorMap<PlainObjectType, Options_> Self;
typedef typename PlainObjectType::Base Base;
typedef typename Eigen::internal::nested<Self>::type Nested;
typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind;
typedef typename internal::traits<PlainObjectType>::Index Index;
typedef typename internal::traits<PlainObjectType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename Base::CoeffReturnType CoeffReturnType;
/* typedef typename internal::conditional<
bool(internal::is_lvalue<PlainObjectType>::value),
Scalar *,
const Scalar *>::type
PointerType;*/
typedef Scalar* PointerType;
typedef PointerType PointerArgType;
static const int Options = Options_;
static const Index NumIndices = PlainObjectType::NumIndices;
typedef typename PlainObjectType::Dimensions Dimensions;
enum {
IsAligned = ((int(Options_)&Aligned)==Aligned),
Layout = PlainObjectType::Layout,
CoordAccess = true,
RawAccess = true
};
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr) : m_data(dataPtr), m_dimensions() {
// The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
EIGEN_STATIC_ASSERT((0 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
}
#if EIGEN_HAS_VARIADIC_TEMPLATES
template<typename... IndexTypes> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension, IndexTypes... otherDimensions) : m_data(dataPtr), m_dimensions(firstDimension, otherDimensions...) {
// The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
EIGEN_STATIC_ASSERT((sizeof...(otherDimensions) + 1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
}
#else
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension) : m_data(dataPtr), m_dimensions(firstDimension) {
// The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
EIGEN_STATIC_ASSERT((1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2) : m_data(dataPtr), m_dimensions(dim1, dim2) {
EIGEN_STATIC_ASSERT(2 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3) {
EIGEN_STATIC_ASSERT(3 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4) {
EIGEN_STATIC_ASSERT(4 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4, Index dim5) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4, dim5) {
EIGEN_STATIC_ASSERT(5 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, const array<Index, NumIndices>& dimensions)
: m_data(dataPtr), m_dimensions(dimensions)
{ }
template <typename Dimensions>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, const Dimensions& dimensions)
: m_data(dataPtr), m_dimensions(dimensions)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PlainObjectType& tensor)
: m_data(tensor.data()), m_dimensions(tensor.dimensions())
{ }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rank() const { return m_dimensions.rank(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_dimensions[n]; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar* data() { return m_data; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar* data() const { return m_data; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
{
// eigen_assert(checkIndexRange(indices));
if (PlainObjectType::Options&RowMajor) {
const Index index = m_dimensions.IndexOfRowMajor(indices);
return m_data[index];
} else {
const Index index = m_dimensions.IndexOfColMajor(indices);
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()() const
{
EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE)
return m_data[0];
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return m_data[index];
}
#if EIGEN_HAS_VARIADIC_TEMPLATES
template<typename... IndexTypes> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
{
EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
if (PlainObjectType::Options&RowMajor) {
const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
return m_data[index];
} else {
const Index index = m_dimensions.IndexOfColMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
return m_data[index];
}
}
#else
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i1 + i0 * m_dimensions[1];
return m_data[index];
} else {
const Index index = i0 + i1 * m_dimensions[0];
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0);
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2);
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0));
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3));
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)));
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4)));
return m_data[index];
}
}
#endif
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
{
// eigen_assert(checkIndexRange(indices));
if (PlainObjectType::Options&RowMajor) {
const Index index = m_dimensions.IndexOfRowMajor(indices);
return m_data[index];
} else {
const Index index = m_dimensions.IndexOfColMajor(indices);
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()()
{
EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE)
return m_data[0];
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index index)
{
eigen_internal_assert(index >= 0 && index < size());
return m_data[index];
}
#if EIGEN_HAS_VARIADIC_TEMPLATES
template<typename... IndexTypes> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
{
static_assert(sizeof...(otherIndices) + 2 == NumIndices || NumIndices == Dynamic, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
const std::size_t NumDims = sizeof...(otherIndices) + 2;
if (PlainObjectType::Options&RowMajor) {
const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}});
return m_data[index];
} else {
const Index index = m_dimensions.IndexOfColMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}});
return m_data[index];
}
}
#else
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i1 + i0 * m_dimensions[1];
return m_data[index];
} else {
const Index index = i0 + i1 * m_dimensions[0];
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0);
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2);
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0));
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3));
return m_data[index];
}
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
{
if (PlainObjectType::Options&RowMajor) {
const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)));
return m_data[index];
} else {
const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4)));
return m_data[index];
}
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Self& operator=(const Self& other)
{
typedef TensorAssignOp<Self, const Self> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
return *this;
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Self& operator=(const OtherDerived& other)
{
typedef TensorAssignOp<Self, const OtherDerived> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
return *this;
}
private:
Scalar* m_data;
Dimensions m_dimensions;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_MAP_H
|