aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
blob: 6d5cce4aa6fe65c7507309e3278da65a04ec93a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
#define EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H


namespace Eigen {

/** \internal
  *
  * \class TensorIntDiv
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Fast integer division by a constant.
  *
  * See the paper from Granlund and Montgomery for explanation.
  *   (at https://doi.org/10.1145/773473.178249)
  *
  * \sa Tensor
  */

namespace internal {

namespace {

  // Note: result is undefined if val == 0
  template <typename T>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
  typename internal::enable_if<sizeof(T)==4,int>::type count_leading_zeros(const T val)
  {
#ifdef EIGEN_GPU_COMPILE_PHASE
    return __clz(val);
#elif defined(SYCL_DEVICE_ONLY)
    return cl::sycl::clz(val);
#elif EIGEN_COMP_MSVC
    unsigned long index;
    _BitScanReverse(&index, val);
    return 31 - index;
#else
    EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE);
    return __builtin_clz(static_cast<uint32_t>(val));
#endif
  }

  template <typename T>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
  typename internal::enable_if<sizeof(T)==8,int>::type count_leading_zeros(const T val)
  {
#ifdef EIGEN_GPU_COMPILE_PHASE
    return __clzll(val);
#elif defined(SYCL_DEVICE_ONLY)
    return static_cast<int>(cl::sycl::clz(val));
#elif EIGEN_COMP_MSVC && EIGEN_ARCH_x86_64
    unsigned long index;
    _BitScanReverse64(&index, val);
    return 63 - index;
#elif EIGEN_COMP_MSVC
    // MSVC's _BitScanReverse64 is not available for 32bits builds.
    unsigned int lo = (unsigned int)(val&0xffffffff);
    unsigned int hi = (unsigned int)((val>>32)&0xffffffff);
    int n;
    if(hi==0)
      n = 32 + count_leading_zeros<unsigned int>(lo);
    else
      n = count_leading_zeros<unsigned int>(hi);
    return n;
#else
    EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE);
    return __builtin_clzll(static_cast<uint64_t>(val));
#endif
  }

  template <typename T>
  struct UnsignedTraits {
    typedef typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type type;
  };

  template <typename T>
  struct DividerTraits {
    typedef typename UnsignedTraits<T>::type type;
    static const int N = sizeof(T) * 8;
  };

  template <typename T>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t muluh(const uint32_t a, const T b) {
#if defined(EIGEN_GPU_COMPILE_PHASE)
    return __umulhi(a, b);
#elif defined(SYCL_DEVICE_ONLY)
    return cl::sycl::mul_hi(a, static_cast<uint32_t>(b));
#else
    return (static_cast<uint64_t>(a) * b) >> 32;
#endif
  }

  template <typename T>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) {
#if defined(EIGEN_GPU_COMPILE_PHASE)
    return __umul64hi(a, b);
#elif defined(SYCL_DEVICE_ONLY)
    return cl::sycl::mul_hi(a, static_cast<uint64_t>(b));
#elif EIGEN_HAS_BUILTIN_INT128
    __uint128_t v = static_cast<__uint128_t>(a) * static_cast<__uint128_t>(b);
    return static_cast<uint64_t>(v >> 64);
#else
    return (TensorUInt128<static_val<0>, uint64_t>(a) * TensorUInt128<static_val<0>, uint64_t>(b)).upper();
#endif
  }

  template <int N, typename T>
  struct DividerHelper {
    static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier(const int log_div, const T divider) {
      EIGEN_STATIC_ASSERT(N == 32, YOU_MADE_A_PROGRAMMING_MISTAKE);
      return static_cast<uint32_t>((static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1);
    }
  };

  template <typename T>
  struct DividerHelper<64, T> {
    static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) {
#if EIGEN_HAS_BUILTIN_INT128 && !defined(EIGEN_GPU_COMPILE_PHASE) && !defined(SYCL_DEVICE_ONLY)
      return static_cast<uint64_t>((static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1);
#else
      const uint64_t shift = 1ULL << log_div;
      TensorUInt128<uint64_t, uint64_t> result = TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider)
                                               - TensorUInt128<static_val<1>, static_val<0> >(1, 0)
                                               + TensorUInt128<static_val<0>, static_val<1> >(1);
      return static_cast<uint64_t>(result);
#endif
    }
  };
}


template <typename T, bool div_gt_one = false>
struct TensorIntDivisor {
 public:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() {
    multiplier = 0;
    shift1 = 0;
    shift2 = 0;
  }

  // Must have 0 < divider < 2^31. This is relaxed to
  // 0 < divider < 2^63 when using 64-bit indices on platforms that support
  // the __uint128_t type.
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor(const T divider) {
    const int N = DividerTraits<T>::N;
    eigen_assert(static_cast<typename UnsignedTraits<T>::type>(divider) < NumTraits<UnsignedType>::highest()/2);
    eigen_assert(divider > 0);

    // fast ln2
    const int leading_zeros = count_leading_zeros(static_cast<UnsignedType>(divider));
    int log_div = N - leading_zeros;
    // if divider is a power of two then log_div is 1 more than it should be.
    if ((static_cast<typename UnsignedTraits<T>::type>(1) << (log_div-1)) == static_cast<typename UnsignedTraits<T>::type>(divider))
      log_div--;

    multiplier = DividerHelper<N, T>::computeMultiplier(log_div, divider);
    shift1 = log_div > 1 ? 1 : log_div;
    shift2 = log_div > 1 ? log_div-1 : 0;
  }

  // Must have 0 <= numerator. On platforms that don't support the __uint128_t
  // type numerator should also be less than 2^32-1.
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T divide(const T numerator) const {
    eigen_assert(static_cast<typename UnsignedTraits<T>::type>(numerator) < NumTraits<UnsignedType>::highest()/2);
    //eigen_assert(numerator >= 0); // this is implicitly asserted by the line above

    UnsignedType t1 = muluh(multiplier, numerator);
    UnsignedType t = (static_cast<UnsignedType>(numerator) - t1) >> shift1;
    return (t1 + t) >> shift2;
  }

 private:
  typedef typename DividerTraits<T>::type UnsignedType;
  UnsignedType multiplier;
  int32_t shift1;
  int32_t shift2;
};


// Optimized version for signed 32 bit integers.
// Derived from Hacker's Delight.
// Only works for divisors strictly greater than one
template <>
class TensorIntDivisor<int32_t, true> {
 public:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() {
    magic = 0;
    shift = 0;
  }
  // Must have 2 <= divider
  EIGEN_DEVICE_FUNC TensorIntDivisor(int32_t divider)  {
    eigen_assert(divider >= 2);
    calcMagic(divider);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int divide(const int32_t n) const {
#ifdef EIGEN_GPU_COMPILE_PHASE
    return (__umulhi(magic, n) >> shift);
#elif defined(SYCL_DEVICE_ONLY)
    return (cl::sycl::mul_hi(magic, static_cast<uint32_t>(n)) >> shift);
#else
    uint64_t v = static_cast<uint64_t>(magic) * static_cast<uint64_t>(n);
    return (static_cast<uint32_t>(v >> 32) >> shift);
#endif
  }

private:
  // Compute the magic numbers. See Hacker's Delight section 10 for an in
  // depth explanation.
  EIGEN_DEVICE_FUNC void calcMagic(int32_t d) {
   const unsigned two31 = 0x80000000;     // 2**31.
   unsigned ad = d;
   unsigned t = two31 + (ad >> 31);
   unsigned anc = t - 1 - t%ad;     // Absolute value of nc.
   int p = 31;                      // Init. p.
   unsigned q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
   unsigned r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
   unsigned q2 = two31/ad;          // Init. q2 = 2**p/|d|.
   unsigned r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
   unsigned delta = 0;
   do {
      p = p + 1;
      q1 = 2*q1;           // Update q1 = 2**p/|nc|.
      r1 = 2*r1;           // Update r1 = rem(2**p, |nc|).
      if (r1 >= anc) {     // (Must be an unsigned
         q1 = q1 + 1;      // comparison here).
         r1 = r1 - anc;}
      q2 = 2*q2;           // Update q2 = 2**p/|d|.
      r2 = 2*r2;           // Update r2 = rem(2**p, |d|).
      if (r2 >= ad) {      // (Must be an unsigned
         q2 = q2 + 1;      // comparison here).
         r2 = r2 - ad;}
      delta = ad - r2;
   } while (q1 < delta || (q1 == delta && r1 == 0));

   magic = (unsigned)(q2 + 1);
   shift = p - 32;
  }

  uint32_t magic;
  int32_t shift;
};


template <typename T, bool div_gt_one>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator / (const T& numerator, const TensorIntDivisor<T, div_gt_one>& divisor) {
  return divisor.divide(numerator);
}


} // end namespace internal
} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H