aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
blob: 354bbe8d1d3243b56b6e535ecf9ebbf18151b804 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
#define EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H

namespace Eigen {

// MakePointer class is used as a container of the adress space of the pointer
// on the host and on the device. From the host side it generates the T* pointer
// and when EIGEN_USE_SYCL is used it construct a buffer with a map_allocator to
// T* m_data on the host. It is always called on the device.
// Specialisation of MakePointer class for creating the sycl buffer with
// map_allocator.
template<typename T> struct MakePointer {
  typedef T* Type;
  typedef T& RefType;
};

namespace internal{
template<typename A, typename B> struct Pointer_type_promotion {
  static const bool val=false;
};
template<typename A> struct Pointer_type_promotion<A, A> {
  static const bool val = true;
};
template<typename A, typename B> struct TypeConversion;
#ifndef __SYCL_DEVICE_ONLY__
template<typename A, typename B> struct TypeConversion{
  typedef A* type;
};
#endif
}

#if defined(EIGEN_USE_SYCL)
namespace TensorSycl {
namespace internal{
template <typename HostExpr, typename FunctorExpr, typename Tuple_of_Acc, typename Dims, typename Op, typename Index> class ReductionFunctor;
template<typename CoeffReturnType ,typename OutAccessor, typename HostExpr, typename FunctorExpr, typename Op, typename Dims, typename Index, typename TupleType>
class FullReductionKernelFunctor;
}
}
#endif



template<typename PlainObjectType, int Options_ = Unaligned, template <class> class MakePointer_ = MakePointer> class TensorMap;
template<typename Scalar_, int NumIndices_, int Options_ = 0, typename IndexType = DenseIndex> class Tensor;
template<typename Scalar_, typename Dimensions, int Options_ = 0, typename IndexType = DenseIndex> class TensorFixedSize;
template<typename PlainObjectType> class TensorRef;
template<typename Derived, int AccessLevel> class TensorBase;

template<typename NullaryOp, typename PlainObjectType> class TensorCwiseNullaryOp;
template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp;
template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> class TensorCwiseTernaryOp;
template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_ = MakePointer > class TensorReductionOp;
template<typename XprType> class TensorIndexTupleOp;
template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
template<typename TargetType, typename XprType> class TensorConversionOp;
template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
template<typename FFT, typename XprType, int FFTDataType, int FFTDirection> class TensorFFTOp;
template<typename PatchDim, typename XprType> class TensorPatchOp;
template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp;
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp;
template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
template<DenseIndex DimId, typename XprType> class TensorChippingOp;
template<typename NewDimensions, typename XprType> class TensorReshapingOp;
template<typename XprType> class TensorLayoutSwapOp;
template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp;
template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
template<typename Shuffle, typename XprType> class TensorShufflingOp;
template<typename Strides, typename XprType> class TensorStridingOp;
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp;
template<typename Strides, typename XprType> class TensorInflationOp;
template<typename Generator, typename XprType> class TensorGeneratorOp;
template<typename LeftXprType, typename RightXprType> class TensorAssignOp;
template<typename Op, typename XprType> class TensorScanOp;
template<typename Dims, typename XprType> class TensorTraceOp;

template<typename CustomUnaryFunc, typename XprType> class TensorCustomUnaryOp;
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> class TensorCustomBinaryOp;

template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorEvalToOp;
template<typename XprType> class TensorForcedEvalOp;

template<typename ExpressionType, typename DeviceType> class TensorDevice;
template<typename Derived, typename Device> struct TensorEvaluator;

struct DefaultDevice;
struct ThreadPoolDevice;
struct GpuDevice;
struct SyclDevice;

enum FFTResultType {
  RealPart = 0,
  ImagPart = 1,
  BothParts = 2
};

enum FFTDirection {
    FFT_FORWARD = 0,
    FFT_REVERSE = 1
};


namespace internal {

template <typename Device, typename Expression>
struct IsVectorizable {
  static const bool value = TensorEvaluator<Expression, Device>::PacketAccess;
};

template <typename Expression>
struct IsVectorizable<GpuDevice, Expression> {
  static const bool value = TensorEvaluator<Expression, GpuDevice>::PacketAccess &&
                            TensorEvaluator<Expression, GpuDevice>::IsAligned;
};

template <typename Expression, typename Device,
          bool Vectorizable = IsVectorizable<Device, Expression>::value>
class TensorExecutor;

}  // end namespace internal

}  // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H