1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
#define EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
namespace Eigen {
/** \class TensorForcedEval
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor reshaping class.
*
*
*/
/// template <class> class MakePointer_ is added to convert the host pointer to the device pointer.
/// It is added due to the fact that for our device compiler T* is not allowed.
/// If we wanted to use the same Evaluator functions we have to convert that type to our pointer T.
/// This is done through our MakePointer_ class. By default the Type in the MakePointer_<T> is T* .
/// Therefore, by adding the default value, we managed to convert the type and it does not break any
/// existing code as its default value is T*.
namespace internal {
template<typename XprType>
struct traits<TensorForcedEvalOp<XprType> >
{
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = XprTraits::NumDimensions;
static const int Layout = XprTraits::Layout;
enum {
Flags = 0
};
};
template<typename XprType>
struct eval<TensorForcedEvalOp<XprType>, Eigen::Dense>
{
typedef const TensorForcedEvalOp<XprType>& type;
};
template<typename XprType>
struct nested<TensorForcedEvalOp<XprType>, 1, typename eval<TensorForcedEvalOp<XprType> >::type>
{
typedef TensorForcedEvalOp<XprType> type;
};
} // end namespace internal
template<typename XprType>
class TensorForcedEvalOp : public TensorBase<TensorForcedEvalOp<XprType>, ReadOnlyAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename Eigen::internal::nested<TensorForcedEvalOp>::type Nested;
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorForcedEvalOp(const XprType& expr)
: m_xpr(expr) {}
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
protected:
typename XprType::Nested m_xpr;
};
template<typename ArgType, typename Device>
struct TensorEvaluator<const TensorForcedEvalOp<ArgType>, Device>
{
typedef TensorForcedEvalOp<ArgType> XprType;
typedef typename ArgType::Scalar Scalar;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
enum {
IsAligned = true,
PacketAccess = (PacketSize > 1),
Layout = TensorEvaluator<ArgType, Device>::Layout,
RawAccess = true
};
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
/// op_ is used for sycl
: m_impl(op.expression(), device), m_op(op.expression()), m_device(device), m_buffer(NULL)
{ }
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
const Index numValues = internal::array_prod(m_impl.dimensions());
m_buffer = (CoeffReturnType*)m_device.allocate(numValues * sizeof(CoeffReturnType));
// Should initialize the memory in case we're dealing with non POD types.
if (NumTraits<CoeffReturnType>::RequireInitialization) {
for (Index i = 0; i < numValues; ++i) {
new(m_buffer+i) CoeffReturnType();
}
}
typedef TensorEvalToOp< const typename internal::remove_const<ArgType>::type > EvalTo;
EvalTo evalToTmp(m_buffer, m_op);
const bool PacketAccess = internal::IsVectorizable<Device, const ArgType>::value;
internal::TensorExecutor<const EvalTo, typename internal::remove_const<Device>::type, PacketAccess>::run(evalToTmp, m_device);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_device.deallocate(m_buffer);
m_buffer = NULL;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return m_buffer[index];
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return m_buffer; }
/// required by sycl in order to extract the sycl accessor
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() { return m_impl; }
/// used by sycl in order to build the sycl buffer
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const{return m_device;}
private:
TensorEvaluator<ArgType, Device> m_impl;
const ArgType m_op;
const Device& m_device;
CoeffReturnType* m_buffer;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
|