aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
blob: 4a1a0687cabbb915d3987bedcfd94149e296005d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Jianwei Cui <thucjw@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_FFT_H
#define EIGEN_CXX11_TENSOR_TENSOR_FFT_H

namespace Eigen {

/** \class TensorFFT
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor FFT class.
  *
  * TODO:
  * Vectorize the Cooley Tukey and the Bluestein algorithm
  * Add support for multithreaded evaluation
  * Improve the performance on GPU
  */

template <bool NeedUprade> struct MakeComplex {
  template <typename T>
  EIGEN_DEVICE_FUNC
  T operator() (const T& val) const { return val; }
};

template <> struct MakeComplex<true> {
  template <typename T>
  EIGEN_DEVICE_FUNC
  std::complex<T> operator() (const T& val) const { return std::complex<T>(val, 0); }
};

template <> struct MakeComplex<false> {
  template <typename T>
  EIGEN_DEVICE_FUNC
  std::complex<T> operator() (const std::complex<T>& val) const { return val; }
};

template <int ResultType> struct PartOf {
  template <typename T> T operator() (const T& val) const { return val; }
};

template <> struct PartOf<RealPart> {
  template <typename T> T operator() (const std::complex<T>& val) const { return val.real(); }
};

template <> struct PartOf<ImagPart> {
  template <typename T> T operator() (const std::complex<T>& val) const { return val.imag(); }
};

namespace internal {
template <typename FFT, typename XprType, int FFTResultType, int FFTDir>
struct traits<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir> > : public traits<XprType> {
  typedef traits<XprType> XprTraits;
  typedef typename NumTraits<typename XprTraits::Scalar>::Real RealScalar;
  typedef typename std::complex<RealScalar> ComplexScalar;
  typedef typename XprTraits::Scalar InputScalar;
  typedef typename conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = XprTraits::NumDimensions;
  static const int Layout = XprTraits::Layout;
  typedef typename traits<XprType>::PointerType PointerType;
};

template <typename FFT, typename XprType, int FFTResultType, int FFTDirection>
struct eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, Eigen::Dense> {
  typedef const TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>& type;
};

template <typename FFT, typename XprType, int FFTResultType, int FFTDirection>
struct nested<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, 1, typename eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> >::type> {
  typedef TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> type;
};

}  // end namespace internal

template <typename FFT, typename XprType, int FFTResultType, int FFTDir>
class TensorFFTOp : public TensorBase<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir>, ReadOnlyAccessors> {
 public:
  typedef typename Eigen::internal::traits<TensorFFTOp>::Scalar Scalar;
  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
  typedef typename std::complex<RealScalar> ComplexScalar;
  typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
  typedef OutputScalar CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorFFTOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorFFTOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorFFTOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFFTOp(const XprType& expr, const FFT& fft)
      : m_xpr(expr), m_fft(fft) {}

  EIGEN_DEVICE_FUNC
  const FFT& fft() const { return m_fft; }

  EIGEN_DEVICE_FUNC
  const typename internal::remove_all<typename XprType::Nested>::type& expression() const {
    return m_xpr;
  }

 protected:
  typename XprType::Nested m_xpr;
  const FFT m_fft;
};

// Eval as rvalue
template <typename FFT, typename ArgType, typename Device, int FFTResultType, int FFTDir>
struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, Device> {
  typedef TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir> XprType;
  typedef typename XprType::Index Index;
  static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
  typedef DSizes<Index, NumDims> Dimensions;
  typedef typename XprType::Scalar Scalar;
  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
  typedef typename std::complex<RealScalar> ComplexScalar;
  typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
  typedef internal::traits<XprType> XprTraits;
  typedef typename XprTraits::Scalar InputScalar;
  typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
  typedef OutputScalar CoeffReturnType;
  typedef typename PacketType<OutputScalar, Device>::type PacketReturnType;
  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
    typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;

  enum {
    IsAligned = false,
    PacketAccess = true,
    BlockAccess = false,
    PreferBlockAccess = false,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,
    RawAccess = false
  };

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockNotImplemented TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_fft(op.fft()), m_impl(op.expression(), device), m_data(NULL), m_device(device) {
    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
    for (int i = 0; i < NumDims; ++i) {
      eigen_assert(input_dims[i] > 0);
      m_dimensions[i] = input_dims[i];
    }

    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_strides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
      }
    } else {
      m_strides[NumDims - 1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
      }
    }
    m_size = m_dimensions.TotalSize();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
    return m_dimensions;
  }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
    m_impl.evalSubExprsIfNeeded(NULL);
    if (data) {
      evalToBuf(data);
      return false;
    } else {
      m_data = (EvaluatorPointerType)m_device.get((CoeffReturnType*)(m_device.allocate_temp(sizeof(CoeffReturnType) * m_size)));
      evalToBuf(m_data);
      return true;
    }
  }

  EIGEN_STRONG_INLINE void cleanup() {
    if (m_data) {
      m_device.deallocate(m_data);
      m_data = NULL;
    }
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const {
    return m_data[index];
  }

  template <int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType
  packet(Index index) const {
    return internal::ploadt<PacketReturnType, LoadMode>(m_data + index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
  costPerCoeff(bool vectorized) const {
    return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; }
#ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_data.bind(cgh);
  }
#endif

 private:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalToBuf(EvaluatorPointerType data) {
    const bool write_to_out = internal::is_same<OutputScalar, ComplexScalar>::value;
    ComplexScalar* buf = write_to_out ? (ComplexScalar*)data : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * m_size);

    for (Index i = 0; i < m_size; ++i) {
      buf[i] = MakeComplex<internal::is_same<InputScalar, RealScalar>::value>()(m_impl.coeff(i));
    }

    for (size_t i = 0; i < m_fft.size(); ++i) {
      Index dim = m_fft[i];
      eigen_assert(dim >= 0 && dim < NumDims);
      Index line_len = m_dimensions[dim];
      eigen_assert(line_len >= 1);
      ComplexScalar* line_buf = (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * line_len);
      const bool is_power_of_two = isPowerOfTwo(line_len);
      const Index good_composite = is_power_of_two ? 0 : findGoodComposite(line_len);
      const Index log_len = is_power_of_two ? getLog2(line_len) : getLog2(good_composite);

      ComplexScalar* a = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite);
      ComplexScalar* b = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite);
      ComplexScalar* pos_j_base_powered = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * (line_len + 1));
      if (!is_power_of_two) {
        // Compute twiddle factors
        //   t_n = exp(sqrt(-1) * pi * n^2 / line_len)
        // for n = 0, 1,..., line_len-1.
        // For n > 2 we use the recurrence t_n = t_{n-1}^2 / t_{n-2} * t_1^2

        // The recurrence is correct in exact arithmetic, but causes
        // numerical issues for large transforms, especially in
        // single-precision floating point.
        //
        // pos_j_base_powered[0] = ComplexScalar(1, 0);
        // if (line_len > 1) {
        //   const ComplexScalar pos_j_base = ComplexScalar(
        //       numext::cos(M_PI / line_len), numext::sin(M_PI / line_len));
        //   pos_j_base_powered[1] = pos_j_base;
        //   if (line_len > 2) {
        //     const ComplexScalar pos_j_base_sq = pos_j_base * pos_j_base;
        //     for (int i = 2; i < line_len + 1; ++i) {
        //       pos_j_base_powered[i] = pos_j_base_powered[i - 1] *
        //           pos_j_base_powered[i - 1] /
        //           pos_j_base_powered[i - 2] *
        //           pos_j_base_sq;
        //     }
        //   }
        // }
        // TODO(rmlarsen): Find a way to use Eigen's vectorized sin
        // and cosine functions here.
        for (int j = 0; j < line_len + 1; ++j) {
          double arg = ((EIGEN_PI * j) * j) / line_len;
          std::complex<double> tmp(numext::cos(arg), numext::sin(arg));
          pos_j_base_powered[j] = static_cast<ComplexScalar>(tmp);
        }
      }

      for (Index partial_index = 0; partial_index < m_size / line_len; ++partial_index) {
        const Index base_offset = getBaseOffsetFromIndex(partial_index, dim);

        // get data into line_buf
        const Index stride = m_strides[dim];
        if (stride == 1) {
          m_device.memcpy(line_buf, &buf[base_offset], line_len*sizeof(ComplexScalar));
        } else {
          Index offset = base_offset;
          for (int j = 0; j < line_len; ++j, offset += stride) {
            line_buf[j] = buf[offset];
          }
        }

        // process the line
        if (is_power_of_two) {
          processDataLineCooleyTukey(line_buf, line_len, log_len);
        }
        else {
          processDataLineBluestein(line_buf, line_len, good_composite, log_len, a, b, pos_j_base_powered);
        }

        // write back
        if (FFTDir == FFT_FORWARD && stride == 1) {
          m_device.memcpy(&buf[base_offset], line_buf, line_len*sizeof(ComplexScalar));
        } else {
          Index offset = base_offset;
          const ComplexScalar div_factor =  ComplexScalar(1.0 / line_len, 0);
          for (int j = 0; j < line_len; ++j, offset += stride) {
             buf[offset] = (FFTDir == FFT_FORWARD) ? line_buf[j] : line_buf[j] * div_factor;
          }
        }
      }
      m_device.deallocate(line_buf);
      if (!is_power_of_two) {
        m_device.deallocate(a);
        m_device.deallocate(b);
        m_device.deallocate(pos_j_base_powered);
      }
    }

    if(!write_to_out) {
      for (Index i = 0; i < m_size; ++i) {
        data[i] = PartOf<FFTResultType>()(buf[i]);
      }
      m_device.deallocate(buf);
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static bool isPowerOfTwo(Index x) {
    eigen_assert(x > 0);
    return !(x & (x - 1));
  }

  // The composite number for padding, used in Bluestein's FFT algorithm
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index findGoodComposite(Index n) {
    Index i = 2;
    while (i < 2 * n - 1) i *= 2;
    return i;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index getLog2(Index m) {
    Index log2m = 0;
    while (m >>= 1) log2m++;
    return log2m;
  }

  // Call Cooley Tukey algorithm directly, data length must be power of 2
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineCooleyTukey(ComplexScalar* line_buf, Index line_len, Index log_len) {
    eigen_assert(isPowerOfTwo(line_len));
    scramble_FFT(line_buf, line_len);
    compute_1D_Butterfly<FFTDir>(line_buf, line_len, log_len);
  }

  // Call Bluestein's FFT algorithm, m is a good composite number greater than (2 * n - 1), used as the padding length
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineBluestein(ComplexScalar* line_buf, Index line_len, Index good_composite, Index log_len, ComplexScalar* a, ComplexScalar* b, const ComplexScalar* pos_j_base_powered) {
    Index n = line_len;
    Index m = good_composite;
    ComplexScalar* data = line_buf;

    for (Index i = 0; i < n; ++i) {
      if(FFTDir == FFT_FORWARD) {
        a[i] = data[i] * numext::conj(pos_j_base_powered[i]);
      }
      else {
        a[i] = data[i] * pos_j_base_powered[i];
      }
    }
    for (Index i = n; i < m; ++i) {
      a[i] = ComplexScalar(0, 0);
    }

    for (Index i = 0; i < n; ++i) {
      if(FFTDir == FFT_FORWARD) {
        b[i] = pos_j_base_powered[i];
      }
      else {
        b[i] = numext::conj(pos_j_base_powered[i]);
      }
    }
    for (Index i = n; i < m - n; ++i) {
      b[i] = ComplexScalar(0, 0);
    }
    for (Index i = m - n; i < m; ++i) {
      if(FFTDir == FFT_FORWARD) {
        b[i] = pos_j_base_powered[m-i];
      }
      else {
        b[i] = numext::conj(pos_j_base_powered[m-i]);
      }
    }

    scramble_FFT(a, m);
    compute_1D_Butterfly<FFT_FORWARD>(a, m, log_len);

    scramble_FFT(b, m);
    compute_1D_Butterfly<FFT_FORWARD>(b, m, log_len);

    for (Index i = 0; i < m; ++i) {
      a[i] *= b[i];
    }

    scramble_FFT(a, m);
    compute_1D_Butterfly<FFT_REVERSE>(a, m, log_len);

    //Do the scaling after ifft
    for (Index i = 0; i < m; ++i) {
      a[i] /= m;
    }

    for (Index i = 0; i < n; ++i) {
      if(FFTDir == FFT_FORWARD) {
        data[i] = a[i] * numext::conj(pos_j_base_powered[i]);
      }
      else {
        data[i] = a[i] * pos_j_base_powered[i];
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void scramble_FFT(ComplexScalar* data, Index n) {
    eigen_assert(isPowerOfTwo(n));
    Index j = 1;
    for (Index i = 1; i < n; ++i){
      if (j > i) {
        std::swap(data[j-1], data[i-1]);
      }
      Index m = n >> 1;
      while (m >= 2 && j > m) {
        j -= m;
        m >>= 1;
      }
      j += m;
    }
  }

  template <int Dir>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_2(ComplexScalar* data) {
    ComplexScalar tmp = data[1];
    data[1] = data[0] - data[1];
    data[0] += tmp;
  }

  template <int Dir>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_4(ComplexScalar* data) {
    ComplexScalar tmp[4];
    tmp[0] = data[0] + data[1];
    tmp[1] = data[0] - data[1];
    tmp[2] = data[2] + data[3];
    if (Dir == FFT_FORWARD) {
      tmp[3] = ComplexScalar(0.0, -1.0) * (data[2] - data[3]);
    } else {
      tmp[3] = ComplexScalar(0.0, 1.0) * (data[2] - data[3]);
    }
    data[0] = tmp[0] + tmp[2];
    data[1] = tmp[1] + tmp[3];
    data[2] = tmp[0] - tmp[2];
    data[3] = tmp[1] - tmp[3];
  }

  template <int Dir>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_8(ComplexScalar* data) {
    ComplexScalar tmp_1[8];
    ComplexScalar tmp_2[8];

    tmp_1[0] = data[0] + data[1];
    tmp_1[1] = data[0] - data[1];
    tmp_1[2] = data[2] + data[3];
    if (Dir == FFT_FORWARD) {
      tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, -1);
    } else {
      tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, 1);
    }
    tmp_1[4] = data[4] + data[5];
    tmp_1[5] = data[4] - data[5];
    tmp_1[6] = data[6] + data[7];
    if (Dir == FFT_FORWARD) {
      tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, -1);
    } else {
      tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, 1);
    }
    tmp_2[0] = tmp_1[0] + tmp_1[2];
    tmp_2[1] = tmp_1[1] + tmp_1[3];
    tmp_2[2] = tmp_1[0] - tmp_1[2];
    tmp_2[3] = tmp_1[1] - tmp_1[3];
    tmp_2[4] = tmp_1[4] + tmp_1[6];
// SQRT2DIV2 = sqrt(2)/2
#define SQRT2DIV2 0.7071067811865476
    if (Dir == FFT_FORWARD) {
      tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, -SQRT2DIV2);
      tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, -1);
      tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, -SQRT2DIV2);
    } else {
      tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, SQRT2DIV2);
      tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, 1);
      tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, SQRT2DIV2);
    }
    data[0] = tmp_2[0] + tmp_2[4];
    data[1] = tmp_2[1] + tmp_2[5];
    data[2] = tmp_2[2] + tmp_2[6];
    data[3] = tmp_2[3] + tmp_2[7];
    data[4] = tmp_2[0] - tmp_2[4];
    data[5] = tmp_2[1] - tmp_2[5];
    data[6] = tmp_2[2] - tmp_2[6];
    data[7] = tmp_2[3] - tmp_2[7];
  }

  template <int Dir>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_1D_merge(
      ComplexScalar* data, Index n, Index n_power_of_2) {
    // Original code:
    // RealScalar wtemp = std::sin(M_PI/n);
    // RealScalar wpi =  -std::sin(2 * M_PI/n);
    const RealScalar wtemp = m_sin_PI_div_n_LUT[n_power_of_2];
    const RealScalar wpi = (Dir == FFT_FORWARD)
                               ? m_minus_sin_2_PI_div_n_LUT[n_power_of_2]
                               : -m_minus_sin_2_PI_div_n_LUT[n_power_of_2];

    const ComplexScalar wp(wtemp, wpi);
    const ComplexScalar wp_one = wp + ComplexScalar(1, 0);
    const ComplexScalar wp_one_2 = wp_one * wp_one;
    const ComplexScalar wp_one_3 = wp_one_2 * wp_one;
    const ComplexScalar wp_one_4 = wp_one_3 * wp_one;
    const Index n2 = n / 2;
    ComplexScalar w(1.0, 0.0);
    for (Index i = 0; i < n2; i += 4) {
       ComplexScalar temp0(data[i + n2] * w);
       ComplexScalar temp1(data[i + 1 + n2] * w * wp_one);
       ComplexScalar temp2(data[i + 2 + n2] * w * wp_one_2);
       ComplexScalar temp3(data[i + 3 + n2] * w * wp_one_3);
       w = w * wp_one_4;

       data[i + n2] = data[i] - temp0;
       data[i] += temp0;

       data[i + 1 + n2] = data[i + 1] - temp1;
       data[i + 1] += temp1;

       data[i + 2 + n2] = data[i + 2] - temp2;
       data[i + 2] += temp2;

       data[i + 3 + n2] = data[i + 3] - temp3;
       data[i + 3] += temp3;
    }
  }

 template <int Dir>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_1D_Butterfly(
      ComplexScalar* data, Index n, Index n_power_of_2) {
    eigen_assert(isPowerOfTwo(n));
    if (n > 8) {
      compute_1D_Butterfly<Dir>(data, n / 2, n_power_of_2 - 1);
      compute_1D_Butterfly<Dir>(data + n / 2, n / 2, n_power_of_2 - 1);
      butterfly_1D_merge<Dir>(data, n, n_power_of_2);
    } else if (n == 8) {
      butterfly_8<Dir>(data);
    } else if (n == 4) {
      butterfly_4<Dir>(data);
    } else if (n == 2) {
      butterfly_2<Dir>(data);
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getBaseOffsetFromIndex(Index index, Index omitted_dim) const {
    Index result = 0;

    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i > omitted_dim; --i) {
        const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim];
        const Index idx = index / partial_m_stride;
        index -= idx * partial_m_stride;
        result += idx * m_strides[i];
      }
      result += index;
    }
    else {
      for (Index i = 0; i < omitted_dim; ++i) {
        const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim];
        const Index idx = index / partial_m_stride;
        index -= idx * partial_m_stride;
        result += idx * m_strides[i];
      }
      result += index;
    }
    // Value of index_coords[omitted_dim] is not determined to this step
    return result;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getIndexFromOffset(Index base, Index omitted_dim, Index offset) const {
    Index result = base + offset * m_strides[omitted_dim] ;
    return result;
  }

 protected:
  Index m_size;
  const FFT EIGEN_DEVICE_REF m_fft;
  Dimensions m_dimensions;
  array<Index, NumDims> m_strides;
  TensorEvaluator<ArgType, Device> m_impl;
  EvaluatorPointerType m_data;
  const Device EIGEN_DEVICE_REF m_device;

  // This will support a maximum FFT size of 2^32 for each dimension
  // m_sin_PI_div_n_LUT[i] = (-2) * std::sin(M_PI / std::pow(2,i)) ^ 2;
  const RealScalar m_sin_PI_div_n_LUT[32] = {
    RealScalar(0.0),
    RealScalar(-2),
    RealScalar(-0.999999999999999),
    RealScalar(-0.292893218813453),
    RealScalar(-0.0761204674887130),
    RealScalar(-0.0192147195967696),
    RealScalar(-0.00481527332780311),
    RealScalar(-0.00120454379482761),
    RealScalar(-3.01181303795779e-04),
    RealScalar(-7.52981608554592e-05),
    RealScalar(-1.88247173988574e-05),
    RealScalar(-4.70619042382852e-06),
    RealScalar(-1.17654829809007e-06),
    RealScalar(-2.94137117780840e-07),
    RealScalar(-7.35342821488550e-08),
    RealScalar(-1.83835707061916e-08),
    RealScalar(-4.59589268710903e-09),
    RealScalar(-1.14897317243732e-09),
    RealScalar(-2.87243293150586e-10),
    RealScalar( -7.18108232902250e-11),
    RealScalar(-1.79527058227174e-11),
    RealScalar(-4.48817645568941e-12),
    RealScalar(-1.12204411392298e-12),
    RealScalar(-2.80511028480785e-13),
    RealScalar(-7.01277571201985e-14),
    RealScalar(-1.75319392800498e-14),
    RealScalar(-4.38298482001247e-15),
    RealScalar(-1.09574620500312e-15),
    RealScalar(-2.73936551250781e-16),
    RealScalar(-6.84841378126949e-17),
    RealScalar(-1.71210344531737e-17),
    RealScalar(-4.28025861329343e-18)
  };

  // m_minus_sin_2_PI_div_n_LUT[i] = -std::sin(2 * M_PI / std::pow(2,i));
  const RealScalar m_minus_sin_2_PI_div_n_LUT[32] = {
    RealScalar(0.0),
    RealScalar(0.0),
    RealScalar(-1.00000000000000e+00),
    RealScalar(-7.07106781186547e-01),
    RealScalar(-3.82683432365090e-01),
    RealScalar(-1.95090322016128e-01),
    RealScalar(-9.80171403295606e-02),
    RealScalar(-4.90676743274180e-02),
    RealScalar(-2.45412285229123e-02),
    RealScalar(-1.22715382857199e-02),
    RealScalar(-6.13588464915448e-03),
    RealScalar(-3.06795676296598e-03),
    RealScalar(-1.53398018628477e-03),
    RealScalar(-7.66990318742704e-04),
    RealScalar(-3.83495187571396e-04),
    RealScalar(-1.91747597310703e-04),
    RealScalar(-9.58737990959773e-05),
    RealScalar(-4.79368996030669e-05),
    RealScalar(-2.39684498084182e-05),
    RealScalar(-1.19842249050697e-05),
    RealScalar(-5.99211245264243e-06),
    RealScalar(-2.99605622633466e-06),
    RealScalar(-1.49802811316901e-06),
    RealScalar(-7.49014056584716e-07),
    RealScalar(-3.74507028292384e-07),
    RealScalar(-1.87253514146195e-07),
    RealScalar(-9.36267570730981e-08),
    RealScalar(-4.68133785365491e-08),
    RealScalar(-2.34066892682746e-08),
    RealScalar(-1.17033446341373e-08),
    RealScalar(-5.85167231706864e-09),
    RealScalar(-2.92583615853432e-09)
  };
};

}  // end namespace Eigen

#endif  // EIGEN_CXX11_TENSOR_TENSOR_FFT_H