aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
blob: c52fb77dc756e72121cd39541b6cd0c32005e6f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H

namespace Eigen {

/**
 * \class TensorExecutor
 * \ingroup CXX11_Tensor_Module
 *
 * \brief The tensor executor class.
 *
 * This class is responsible for launch the evaluation of the expression on
 * the specified computing device.
 *
 * @tparam Vectorizable can use packet math (SSE/AVX/etc... registers and
 *                      instructions)
 * @tparam Tiling       can use block based tensor evaluation
 *                      (see TensorBlock.h)
 */
namespace internal {

/**
 * Evaluating TensorBroadcastingOp via coefficient of packet path is extremely
 * expensive. If expression has at least one broadcast op in it, and it supports
 * block based evaluation, we always prefer it, even for the small tensors. For
 * all other tileable ops, block evaluation overhead for small tensors (fits
 * into L1) is too large, and we fallback on vectorized evaluation.
 */

// TODO(ezhulenev): Add specializations for all other types of Tensor ops.

template<typename Expression>
struct ExpressionHasTensorBroadcastingOp {
  enum { value = false };
};

template<typename LhsXprType, typename RhsXprType>
struct ExpressionHasTensorBroadcastingOp<
    const TensorAssignOp<LhsXprType, RhsXprType> > {
  enum { value = ExpressionHasTensorBroadcastingOp<RhsXprType>::value };
};

template<typename UnaryOp, typename XprType>
struct ExpressionHasTensorBroadcastingOp<
    const TensorCwiseUnaryOp<UnaryOp, XprType> > {
  enum { value = ExpressionHasTensorBroadcastingOp<XprType>::value };
};

template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
struct ExpressionHasTensorBroadcastingOp<
    const TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> > {
  enum {
    value = ExpressionHasTensorBroadcastingOp<LhsXprType>::value ||
        ExpressionHasTensorBroadcastingOp<RhsXprType>::value
  };
};

template<typename Broadcast, typename XprType>
struct ExpressionHasTensorBroadcastingOp<
    const TensorBroadcastingOp<Broadcast, XprType> > {
  enum { value = true };
};

// -------------------------------------------------------------------------- //

/**
 * Default strategy: the expression is evaluated sequentially with a single cpu
 * thread, without vectorization and block evaluation.
 */
template <typename Expression, typename Device, bool Vectorizable,
          TiledEvaluation Tiling>
class TensorExecutor {
 public:
  typedef typename Expression::Index StorageIndex;

  // Including `unsupported/Eigen/CXX11/Tensor` in different translation units
  // with/without `EIGEN_USE_THREADS` or `EIGEN_USE_GPU` is a potential ODR
  // violation. If this template is instantiated with a non-default device, it
  // means that this header file was included without defining
  // `EIGEN_USE_THREADS`, `EIGEN_USE_GPU` or `EIGEN_USE_SYCL`.
  static_assert(std::is_same<Device, DefaultDevice>::value,
                "Default executor instantiated with non-default device. "
                "You must #define EIGEN_USE_THREADS, EIGEN_USE_GPU or "
                "EIGEN_USE_SYCL before including Eigen headers.");

  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE void run(const Expression& expr,
                                      const Device& device = Device()) {
    TensorEvaluator<Expression, Device> evaluator(expr, device);
    const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
    if (needs_assign) {
      const StorageIndex size = array_prod(evaluator.dimensions());
      for (StorageIndex i = 0; i < size; ++i) {
        evaluator.evalScalar(i);
      }
    }
    evaluator.cleanup();
  }
};

/**
 * Default async execution strategy is not implemented. Currently it's only
 * available for ThreadPoolDevice (see definition below).
 */
template <typename Expression, typename Device, typename DoneCallback,
          bool Vectorizable, TiledEvaluation Tiling>
class TensorAsyncExecutor {};

/**
 * Process all the data with a single cpu thread, using vectorized instructions.
 */
template <typename Expression>
class TensorExecutor<Expression, DefaultDevice, /*Vectorizable=*/true,
                     /*Tiling=*/TiledEvaluation::Off> {
 public:
  typedef typename Expression::Index StorageIndex;

  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE void run(
      const Expression& expr, const DefaultDevice& device = DefaultDevice()) {
    TensorEvaluator<Expression, DefaultDevice> evaluator(expr, device);
    const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
    if (needs_assign) {
      const StorageIndex size = array_prod(evaluator.dimensions());
      const int PacketSize = unpacket_traits<typename TensorEvaluator<
          Expression, DefaultDevice>::PacketReturnType>::size;

      // Give compiler a strong possibility to unroll the loop. But don't insist
      // on unrolling, because if the function is expensive compiler should not
      // unroll the loop at the expense of inlining.
      const StorageIndex UnrolledSize =
          (size / (4 * PacketSize)) * 4 * PacketSize;
      for (StorageIndex i = 0; i < UnrolledSize; i += 4 * PacketSize) {
        for (StorageIndex j = 0; j < 4; j++) {
          evaluator.evalPacket(i + j * PacketSize);
        }
      }
      const StorageIndex VectorizedSize = (size / PacketSize) * PacketSize;
      for (StorageIndex i = UnrolledSize; i < VectorizedSize; i += PacketSize) {
        evaluator.evalPacket(i);
      }
      for (StorageIndex i = VectorizedSize; i < size; ++i) {
        evaluator.evalScalar(i);
      }
    }
    evaluator.cleanup();
  }
};

/**
 * Process all the data with a single cpu thread, using blocks of data. By
 * sizing a block to fit L1 cache we get better cache performance.
 */
template <typename Expression, bool Vectorizable>
class TensorExecutor<Expression, DefaultDevice, Vectorizable,
                     /*Tiling=*/TiledEvaluation::On> {
 public:
  typedef typename traits<Expression>::Scalar Scalar;
  typedef typename remove_const<Scalar>::type ScalarNoConst;

  typedef TensorEvaluator<Expression, DefaultDevice> Evaluator;
  typedef typename traits<Expression>::Index StorageIndex;

  static const int NumDims = traits<Expression>::NumDimensions;

  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE void run(const Expression& expr,
                         const DefaultDevice& device = DefaultDevice()) {
    typedef TensorBlockMapper<NumDims, Evaluator::Layout, StorageIndex>
        TensorBlockMapper;

    typedef internal::TensorBlockDescriptor<NumDims, StorageIndex>
        TensorBlockDesc;
    typedef internal::TensorBlockScratchAllocator<DefaultDevice>
        TensorBlockScratch;

    Evaluator evaluator(expr, device);

    // TODO(ezhulenev): Do not use tiling for small tensors?
    const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);

    if (needs_assign) {
      // Query expression tree for desired block size/shape.
      const TensorBlockResourceRequirements requirements =
          evaluator.getResourceRequirements();

      const TensorBlockMapper block_mapper(
          typename TensorBlockDesc::Dimensions(evaluator.dimensions()),
          requirements);

      // Share scratch memory allocator between all blocks.
      TensorBlockScratch scratch(device);

      const StorageIndex total_block_count = block_mapper.blockCount();
      for (StorageIndex i = 0; i < total_block_count; ++i) {
        TensorBlockDesc desc = block_mapper.blockDescriptor(i);
        evaluator.evalBlock(desc, scratch);
        scratch.reset();
      }
    }
    evaluator.cleanup();
  }
};

/**
 * Multicore strategy: the index space is partitioned and each partition is
 * executed on a single core.
 *
 * (1) TensorExecutor will submit work to the ThreadPoolDevice managed thread
 *     pool, and will block the caller thread until all tasks are finished.
 *
 * (2) TensorAsyncExecutor is a non-blocking version, that will submit work to
 *     the ThreadPoolDevice managed thread pool, and will return immediately.
 *     It will call 'done' callback after all tasks are finished.
 */
#ifdef EIGEN_USE_THREADS

template <typename TensorBlockMapper>
struct TensorExecutorTilingContext {
  TensorExecutorTilingContext() = default;
  TensorExecutorTilingContext(const TensorBlockMapper& b_mapper,
                              const TensorOpCost& b_cost, size_t b_aligned_size)
      : block_mapper(b_mapper),
        cost(b_cost),
        aligned_blocksize(b_aligned_size) {}

  TensorBlockMapper block_mapper;  // navigate through blocks
  TensorOpCost cost;               // cost of computing a single block
  size_t aligned_blocksize;        // block size after memory alignment
};

// Computes a block evaluation parameters, and allocates temporary memory buffer
// for blocks. See TensorExecutor/TensorAsyncExecutor (Tiling=On) below.
template <typename Evaluator, typename TensorBlockMapper, bool Vectorizable>
TensorExecutorTilingContext<TensorBlockMapper> GetTensorExecutorTilingContext(
    const Evaluator& evaluator) {
  // Query expression tree for desired block size/shape.
  TensorBlockResourceRequirements requirements =
      evaluator.getResourceRequirements();

  // Update target block size based on cost model.
  double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize(
      1, requirements.cost_per_coeff);
  requirements.size = static_cast<size_t>(1.0 / taskSize);

  TensorBlockMapper block_mapper(
      typename TensorBlockMapper::Dimensions(evaluator.dimensions()),
      requirements);

  size_t block_size = block_mapper.blockTotalSize();
  const size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
  const size_t aligned_blocksize =
      align *
      divup<size_t>(block_size * sizeof(typename Evaluator::Scalar), align);

  return {block_mapper, requirements.cost_per_coeff * block_size,
          aligned_blocksize};
}

template <typename Evaluator, typename StorageIndex, bool Vectorizable>
struct EvalRange {
  static void run(Evaluator* evaluator_in, const StorageIndex firstIdx,
                  const StorageIndex lastIdx) {
    Evaluator evaluator = *evaluator_in;
    eigen_assert(lastIdx >= firstIdx);
    for (StorageIndex i = firstIdx; i < lastIdx; ++i) {
      evaluator.evalScalar(i);
    }
  }

  static StorageIndex alignBlockSize(StorageIndex size) { return size; }
};

template <typename Evaluator, typename StorageIndex>
struct EvalRange<Evaluator, StorageIndex, /*Vectorizable*/ true> {
  static const int PacketSize =
      unpacket_traits<typename Evaluator::PacketReturnType>::size;

  static void run(Evaluator* evaluator_in, const StorageIndex firstIdx,
                  const StorageIndex lastIdx) {
    Evaluator evaluator = *evaluator_in;
    eigen_assert(lastIdx >= firstIdx);
    StorageIndex i = firstIdx;
    if (lastIdx - firstIdx >= PacketSize) {
      eigen_assert(firstIdx % PacketSize == 0);
      StorageIndex last_chunk_offset = lastIdx - 4 * PacketSize;
      // Give compiler a strong possibility to unroll the loop. But don't insist
      // on unrolling, because if the function is expensive compiler should not
      // unroll the loop at the expense of inlining.
      for (; i <= last_chunk_offset; i += 4 * PacketSize) {
        for (StorageIndex j = 0; j < 4; j++) {
          evaluator.evalPacket(i + j * PacketSize);
        }
      }
      last_chunk_offset = lastIdx - PacketSize;
      for (; i <= last_chunk_offset; i += PacketSize) {
        evaluator.evalPacket(i);
      }
    }
    for (; i < lastIdx; ++i) {
      evaluator.evalScalar(i);
    }
  }

  static StorageIndex alignBlockSize(StorageIndex size) {
    // Align block size to packet size and account for unrolling in run above.
    if (size >= 16 * PacketSize) {
      return (size + 4 * PacketSize - 1) & ~(4 * PacketSize - 1);
    }
    // Aligning to 4 * PacketSize would increase block size by more than 25%.
    return (size + PacketSize - 1) & ~(PacketSize - 1);
  }
};

template <typename Expression, bool Vectorizable, TiledEvaluation Tiling>
class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable, Tiling> {
 public:
  typedef typename Expression::Index StorageIndex;

  static EIGEN_STRONG_INLINE void run(const Expression& expr,
                         const ThreadPoolDevice& device) {
    typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
    typedef EvalRange<Evaluator, StorageIndex, Vectorizable> EvalRange;

    Evaluator evaluator(expr, device);
    const bool needs_assign = evaluator.evalSubExprsIfNeeded(nullptr);
    if (needs_assign) {
      const StorageIndex size = array_prod(evaluator.dimensions());
      device.parallelFor(size, evaluator.costPerCoeff(Vectorizable),
                         EvalRange::alignBlockSize,
                         [&evaluator](StorageIndex firstIdx, StorageIndex lastIdx) {
                           EvalRange::run(&evaluator, firstIdx, lastIdx);
                         });
    }
    evaluator.cleanup();
  }
};

template <typename Expression, bool Vectorizable>
class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable,
                     /*Tiling=*/TiledEvaluation::On> {
 public:
  typedef typename traits<Expression>::Index IndexType;
  typedef typename traits<Expression>::Scalar Scalar;
  typedef typename remove_const<Scalar>::type ScalarNoConst;

  static const int NumDims = traits<Expression>::NumDimensions;

  typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
  typedef TensorBlockMapper<NumDims, Evaluator::Layout, IndexType> BlockMapper;
  typedef TensorExecutorTilingContext<BlockMapper> TilingContext;

  typedef internal::TensorBlockDescriptor<NumDims, IndexType>
      TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<ThreadPoolDevice>
      TensorBlockScratch;

  static EIGEN_STRONG_INLINE void run(const Expression& expr,
                                      const ThreadPoolDevice& device) {
    Evaluator evaluator(expr, device);

    const bool needs_assign = evaluator.evalSubExprsIfNeeded(nullptr);
    if (needs_assign) {
      const TilingContext tiling =
          internal::GetTensorExecutorTilingContext<Evaluator, BlockMapper,
                                                   Vectorizable>(evaluator);

      auto eval_block = [&device, &evaluator, &tiling](IndexType firstBlockIdx,
                                                       IndexType lastBlockIdx) {
        TensorBlockScratch scratch(device);

        for (IndexType block_idx = firstBlockIdx; block_idx < lastBlockIdx;
             ++block_idx) {
          TensorBlockDesc desc = tiling.block_mapper.blockDescriptor(block_idx);
          evaluator.evalBlock(desc, scratch);
          scratch.reset();
        }
      };

      // Evaluate small expressions directly as a single block.
      if (tiling.block_mapper.blockCount() == 1) {
        TensorBlockScratch scratch(device);
        TensorBlockDesc desc(0, tiling.block_mapper.blockDimensions());
        evaluator.evalBlock(desc, scratch);
      } else {
        device.parallelFor(tiling.block_mapper.blockCount(), tiling.cost,
                           eval_block);
      }
    }
    evaluator.cleanup();
  }
};

template <typename Expression, typename DoneCallback, bool Vectorizable,
          TiledEvaluation Tiling>
class TensorAsyncExecutor<Expression, ThreadPoolDevice, DoneCallback,
                          Vectorizable, Tiling> {
 public:
  typedef typename Expression::Index StorageIndex;
  typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;

  static EIGEN_STRONG_INLINE void runAsync(const Expression& expr,
                                           const ThreadPoolDevice& device,
                                           DoneCallback done) {
    TensorAsyncExecutorContext* const ctx =
        new TensorAsyncExecutorContext(expr, device, std::move(done));

    const auto on_eval_subexprs = [ctx, &device](bool need_assign) -> void {
      if (!need_assign) {
        delete ctx;
        return;
      }

      typedef EvalRange<Evaluator, StorageIndex, Vectorizable> EvalRange;
      const StorageIndex size = array_prod(ctx->evaluator.dimensions());
      device.parallelForAsync(
          size, ctx->evaluator.costPerCoeff(Vectorizable),
          EvalRange::alignBlockSize,
          [ctx](StorageIndex firstIdx, StorageIndex lastIdx) {
            EvalRange::run(&ctx->evaluator, firstIdx, lastIdx);
          },
          [ctx]() { delete ctx; });
    };

    ctx->evaluator.evalSubExprsIfNeededAsync(nullptr, on_eval_subexprs);
  }

 private:
  struct TensorAsyncExecutorContext {
    TensorAsyncExecutorContext(const Expression& expr,
                               const ThreadPoolDevice& thread_pool,
                               DoneCallback done)
        : evaluator(expr, thread_pool), on_done(std::move(done)) {}

    ~TensorAsyncExecutorContext() {
      evaluator.cleanup();
      on_done();
    }

    Evaluator evaluator;

   private:
    DoneCallback on_done;
  };
};

template <typename Expression, typename DoneCallback, bool Vectorizable>
class TensorAsyncExecutor<Expression, ThreadPoolDevice, DoneCallback,
                          Vectorizable, /*Tileable*/ TiledEvaluation::On> {
 public:
  typedef typename traits<Expression>::Index IndexType;
  typedef typename traits<Expression>::Scalar Scalar;
  typedef typename remove_const<Scalar>::type ScalarNoConst;

  static const int NumDims = traits<Expression>::NumDimensions;

  typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
  typedef TensorBlockMapper<NumDims, Evaluator::Layout, IndexType> BlockMapper;
  typedef TensorExecutorTilingContext<BlockMapper> TilingContext;

  typedef internal::TensorBlockDescriptor<NumDims, IndexType> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<ThreadPoolDevice>
      TensorBlockScratch;

  static EIGEN_STRONG_INLINE void runAsync(const Expression& expr,
                                           const ThreadPoolDevice& device,
                                           DoneCallback done) {

    TensorAsyncExecutorContext* const ctx =
        new TensorAsyncExecutorContext(expr, device, std::move(done));

    const auto on_eval_subexprs = [ctx](bool need_assign) -> void {
      if (!need_assign) {
        delete ctx;
        return;
      }

      ctx->tiling = internal::GetTensorExecutorTilingContext<
          Evaluator, BlockMapper, Vectorizable>(ctx->evaluator);

      auto eval_block = [ctx](IndexType firstBlockIdx, IndexType lastBlockIdx) {
        TensorBlockScratch scratch(ctx->device);

        for (IndexType block_idx = firstBlockIdx; block_idx < lastBlockIdx;
             ++block_idx) {
          TensorBlockDesc desc =
              ctx->tiling.block_mapper.blockDescriptor(block_idx);
          ctx->evaluator.evalBlock(desc, scratch);
          scratch.reset();
        }
      };

      // Evaluate small expressions directly as a single block.
      if (ctx->tiling.block_mapper.blockCount() == 1) {
        TensorBlockScratch scratch(ctx->device);
        TensorBlockDesc desc(0, ctx->tiling.block_mapper.blockDimensions());
        ctx->evaluator.evalBlock(desc, scratch);
        delete ctx;
      } else {
        ctx->device.parallelForAsync(ctx->tiling.block_mapper.blockCount(),
                                     ctx->tiling.cost, eval_block,
                                     [ctx]() { delete ctx; });
      }
    };

    ctx->evaluator.evalSubExprsIfNeededAsync(nullptr, on_eval_subexprs);
  }

 private:
  struct TensorAsyncExecutorContext {
    TensorAsyncExecutorContext(const Expression& expr,
                               const ThreadPoolDevice& thread_pool,
                               DoneCallback done)
        : device(thread_pool),
          evaluator(expr, thread_pool),
          on_done(std::move(done)) {}

    ~TensorAsyncExecutorContext() {
      evaluator.cleanup();
      on_done();
    }

    const ThreadPoolDevice& device;
    Evaluator evaluator;
    TilingContext tiling;

   private:
    DoneCallback on_done;
  };
};

#endif  // EIGEN_USE_THREADS

// GPU: the evaluation of the expression is offloaded to a GPU.
#if defined(EIGEN_USE_GPU)

template <typename Expression, bool Vectorizable, TiledEvaluation Tiling>
class TensorExecutor<Expression, GpuDevice, Vectorizable, Tiling> {
 public:
  typedef typename Expression::Index StorageIndex;
  static void run(const Expression& expr, const GpuDevice& device);
};

#if defined(EIGEN_GPUCC)
template <typename Evaluator, typename StorageIndex, bool Vectorizable>
struct EigenMetaKernelEval {
  static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
  void run(Evaluator& eval, StorageIndex firstIdx, StorageIndex lastIdx, StorageIndex step_size) {
    for (StorageIndex i = firstIdx; i < lastIdx; i += step_size) {
      eval.evalScalar(i);
    }
  }
};

template <typename Evaluator, typename StorageIndex>
struct EigenMetaKernelEval<Evaluator, StorageIndex, true> {
  static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
  void run(Evaluator& eval, StorageIndex firstIdx, StorageIndex lastIdx, StorageIndex step_size) {
    const StorageIndex PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
    const StorageIndex vectorized_size = (lastIdx / PacketSize) * PacketSize;
    const StorageIndex vectorized_step_size = step_size * PacketSize;

    // Use the vector path
    for (StorageIndex i = firstIdx * PacketSize; i < vectorized_size;
         i += vectorized_step_size) {
      eval.evalPacket(i);
    }
    for (StorageIndex i = vectorized_size + firstIdx; i < lastIdx; i += step_size) {
      eval.evalScalar(i);
    }
  }
};

template <typename Evaluator, typename StorageIndex>
__global__ void
__launch_bounds__(1024)
EigenMetaKernel(Evaluator eval, StorageIndex size) {

  const StorageIndex first_index = blockIdx.x * blockDim.x + threadIdx.x;
  const StorageIndex step_size = blockDim.x * gridDim.x;

  const bool vectorizable = Evaluator::PacketAccess & Evaluator::IsAligned;
  EigenMetaKernelEval<Evaluator, StorageIndex, vectorizable>::run(eval, first_index, size, step_size);
}

/*static*/
template <typename Expression, bool Vectorizable, TiledEvaluation Tiling>
EIGEN_STRONG_INLINE void TensorExecutor<Expression, GpuDevice, Vectorizable, Tiling>::run(
    const Expression& expr, const GpuDevice& device) {
  TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
  const bool needs_assign = evaluator.evalSubExprsIfNeeded(nullptr);
  if (needs_assign) {

    const int block_size = device.maxGpuThreadsPerBlock();
    const int max_blocks = device.getNumGpuMultiProcessors() *
                           device.maxGpuThreadsPerMultiProcessor() / block_size;
    const StorageIndex size = array_prod(evaluator.dimensions());
    // Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
    const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1);

    LAUNCH_GPU_KERNEL(
        (EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, StorageIndex>),
        num_blocks, block_size, 0, device, evaluator, size);
  }
  evaluator.cleanup();
}

#endif  // EIGEN_GPUCC
#endif  // EIGEN_USE_GPU

// SYCL Executor policy
#ifdef EIGEN_USE_SYCL

template <typename Evaluator>
struct ExecExprFunctorKernel {
  typedef typename Evaluator::Index Index;
  Evaluator evaluator;
  const Index range;
  template <typename Scratch>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ExecExprFunctorKernel(
      const Scratch, Evaluator evaluator_, const Index range_)
      : evaluator(evaluator_), range(range_) {}

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void operator()(
      cl::sycl::nd_item<1> itemID) {
    compute(itemID);
  }
  template <bool is_vec = Evaluator::PacketAccess>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename std::enable_if<!is_vec>::type
  compute(const cl::sycl::nd_item<1>& itemID) {
    Index gId = static_cast<Index>(itemID.get_global_linear_id());
    Index total_threads = itemID.get_global_range(0);

    for (Index i = gId; i < range; i += total_threads) {
      evaluator.evalScalar(i);
    }
  }
  template <bool is_vec = Evaluator::PacketAccess>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename std::enable_if<is_vec>::type
  compute(const cl::sycl::nd_item<1>& itemID) {
    const Index vectorizedRange =
        (range / Evaluator::PacketSize) * Evaluator::PacketSize;
    Index gId = static_cast<Index>(itemID.get_global_linear_id());
    const Index step = Evaluator::PacketSize * itemID.get_global_range(0);
    const Index start = Evaluator::PacketSize * gId;
    for (Index i = start; i < vectorizedRange; i += step) {
      evaluator.evalPacket(i);
    }
    gId += vectorizedRange;
    for (Index i = gId; i < range; i += itemID.get_global_range(0)) {
      evaluator.evalScalar(i);
    }
  }
};

template <typename Expression, bool Vectorizable, TiledEvaluation Tiling>
class TensorExecutor<Expression, Eigen::SyclDevice, Vectorizable, Tiling> {
 public:
  typedef typename Expression::Index Index;
  static EIGEN_STRONG_INLINE void run(const Expression& expr,
                                      const Eigen::SyclDevice& dev) {
    typedef Eigen::TensorEvaluator<Expression, Eigen::SyclDevice> Evaluator;
    Evaluator evaluator(expr, dev);
    const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
    if (needs_assign) {
      Index range, GRange, tileSize;
      Index total_size = ::Eigen::internal::array_prod(evaluator.dimensions());
      total_size = (total_size == 0) ? 1 : total_size;
      const int PacketSize =
          Eigen::PacketType<typename Evaluator::CoeffReturnType,
                            Eigen::SyclDevice>::size;
      Index vectorizable_threads = static_cast<Index>(total_size / PacketSize);
      dev.parallel_for_setup(vectorizable_threads, tileSize, range, GRange);
      range = total_size;

      dev.template nullary_kernel_launcher<
          typename Evaluator::CoeffReturnType,
          ExecExprFunctorKernel<Evaluator> >(
          evaluator,
          cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange),
                                cl::sycl::range<1>(tileSize)),
          Index(1), range);
    }
    evaluator.cleanup();
  }
};

#endif

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H