aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
blob: ad5c97b573be5113ea1580522ca55d045694e4f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H

namespace Eigen {

/** \class TensorExecutor
  * \ingroup CXX11_Tensor_Module
  *
  * \brief The tensor executor class.
  *
  * This class is responsible for launch the evaluation of the expression on
  * the specified computing device.
  */
namespace internal {

// Default strategy: the expression is evaluated with a single cpu thread.
template<typename Expression, typename Device, bool Vectorizable>
class TensorExecutor
{
 public:
  typedef typename Expression::Index Index;
  EIGEN_DEVICE_FUNC
  static inline void run(const Expression& expr, const Device& device = Device())
  {
    TensorEvaluator<Expression, Device> evaluator(expr, device);
    const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
    if (needs_assign)
    {
      const Index size = array_prod(evaluator.dimensions());
      for (Index i = 0; i < size; ++i) {
        evaluator.evalScalar(i);
      }
    }
    evaluator.cleanup();
  }
};


template<typename Expression>
class TensorExecutor<Expression, DefaultDevice, true>
{
 public:
  typedef typename Expression::Index Index;
  EIGEN_DEVICE_FUNC
  static inline void run(const Expression& expr, const DefaultDevice& device = DefaultDevice())
  {
    TensorEvaluator<Expression, DefaultDevice> evaluator(expr, device);
    const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
    if (needs_assign)
    {
      const Index size = array_prod(evaluator.dimensions());
      const int PacketSize = unpacket_traits<typename TensorEvaluator<Expression, DefaultDevice>::PacketReturnType>::size;
      // Give the compiler a strong hint to unroll the loop. But don't insist
      // on unrolling, because if the function is expensive the compiler should not
      // unroll the loop at the expense of inlining.
      const Index UnrolledSize = (size / (4 * PacketSize)) * 4 * PacketSize;
      for (Index i = 0; i < UnrolledSize; i += 4*PacketSize) {
        for (Index j = 0; j < 4; j++) {
          evaluator.evalPacket(i + j * PacketSize);
        }
      }
      const Index VectorizedSize = (size / PacketSize) * PacketSize;
      for (Index i = UnrolledSize; i < VectorizedSize; i += PacketSize) {
        evaluator.evalPacket(i);
      }
      for (Index i = VectorizedSize; i < size; ++i) {
        evaluator.evalScalar(i);
      }
    }
    evaluator.cleanup();
  }
};



// Multicore strategy: the index space is partitioned and each partition is executed on a single core
#ifdef EIGEN_USE_THREADS
template <typename Evaluator, typename Index, bool Vectorizable>
struct EvalRange {
  static void run(Evaluator* evaluator_in, const Index first, const Index last) {
    Evaluator evaluator = *evaluator_in;
    eigen_assert(last >= first);
    for (Index i = first; i < last; ++i) {
      evaluator.evalScalar(i);
    }
  }

  static Index alignBlockSize(Index size) {
    return size;
  }
};

template <typename Evaluator, typename Index>
struct EvalRange<Evaluator, Index, true> {
  static const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;

  static void run(Evaluator* evaluator_in, const Index first, const Index last) {
    Evaluator evaluator = *evaluator_in;
    eigen_assert(last >= first);
    Index i = first;
    if (last - first >= PacketSize) {
      eigen_assert(first % PacketSize == 0);
      Index last_chunk_offset = last - 4 * PacketSize;
      // Give the compiler a strong hint to unroll the loop. But don't insist
      // on unrolling, because if the function is expensive the compiler should not
      // unroll the loop at the expense of inlining.
      for (; i <= last_chunk_offset; i += 4*PacketSize) {
        for (Index j = 0; j < 4; j++) {
          evaluator.evalPacket(i + j * PacketSize);
        }
      }
      last_chunk_offset = last - PacketSize;
      for (; i <= last_chunk_offset; i += PacketSize) {
        evaluator.evalPacket(i);
      }
    }
    for (; i < last; ++i) {
      evaluator.evalScalar(i);
    }
  }

  static Index alignBlockSize(Index size) {
    // Align block size to packet size and account for unrolling in run above.
    if (size >= 16 * PacketSize) {
      return (size + 4 * PacketSize - 1) & ~(4 * PacketSize - 1);
    }
    // Aligning to 4 * PacketSize would increase block size by more than 25%.
    return (size + PacketSize - 1) & ~(PacketSize - 1);
  }
};

template <typename Expression, bool Vectorizable>
class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
 public:
  typedef typename Expression::Index Index;
  static inline void run(const Expression& expr, const ThreadPoolDevice& device)
  {
    typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
    Evaluator evaluator(expr, device);
    const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
    if (needs_assign)
    {
      const Index size = array_prod(evaluator.dimensions());
#if !defined(EIGEN_USE_SIMPLE_THREAD_POOL)
      device.parallelFor(size, evaluator.costPerCoeff(Vectorizable),
                         EvalRange<Evaluator, Index, Vectorizable>::alignBlockSize,
                         [&evaluator](Index first, Index last) {
                           EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, first, last);
                         });
#else
      size_t num_threads = device.numThreads();
      if (num_threads > 1) {
        cost = evaluator.costPerCoeff(Vectorizable)
        num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
            size, evaluator.costPerCoeff(Vectorizable), num_threads);
      }
      if (num_threads == 1) {
        EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, 0, size);
      } else {
        const Index PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
        Index blocksz = std::ceil<Index>(static_cast<float>(size)/num_threads) + PacketSize - 1;
        const Index blocksize = numext::maxi<Index>(PacketSize, (blocksz - (blocksz % PacketSize)));
        const Index numblocks = size / blocksize;

        Barrier barrier(numblocks);
        for (int i = 0; i < numblocks; ++i) {
          device.enqueue_with_barrier(
              &barrier, &EvalRange<Evaluator, Index, Vectorizable>::run,
              &evaluator, i * blocksize, (i + 1) * blocksize);
        }
        if (numblocks * blocksize < size) {
          EvalRange<Evaluator, Index, Vectorizable>::run(
              &evaluator, numblocks * blocksize, size);
        }
        barrier.Wait();
      }
#endif  // defined(!EIGEN_USE_SIMPLE_THREAD_POOL)
    }
    evaluator.cleanup();
  }
};
#endif  // EIGEN_USE_THREADS


// GPU: the evaluation of the expression is offloaded to a GPU.
#if defined(EIGEN_USE_GPU)

template <typename Expression, bool Vectorizable>
class TensorExecutor<Expression, GpuDevice, Vectorizable> {
 public:
  typedef typename Expression::Index Index;
  static void run(const Expression& expr, const GpuDevice& device);
};


#if defined(__CUDACC__)
template <typename Evaluator, typename Index, bool Vectorizable>
struct EigenMetaKernelEval {
  static __device__ EIGEN_ALWAYS_INLINE
  void run(Evaluator& eval, Index first, Index last, Index step_size) {
    for (Index i = first; i < last; i += step_size) {
      eval.evalScalar(i);
    }
  }
};

template <typename Evaluator, typename Index>
struct EigenMetaKernelEval<Evaluator, Index, true> {
  static __device__ EIGEN_ALWAYS_INLINE
  void run(Evaluator& eval, Index first, Index last, Index step_size) {
    const Index PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
    const Index vectorized_size = (last / PacketSize) * PacketSize;
    const Index vectorized_step_size = step_size * PacketSize;

    // Use the vector path
    for (Index i = first * PacketSize; i < vectorized_size;
         i += vectorized_step_size) {
      eval.evalPacket(i);
    }
    for (Index i = vectorized_size + first; i < last; i += step_size) {
      eval.evalScalar(i);
    }
  }
};

template <typename Evaluator, typename Index>
__global__ void
__launch_bounds__(1024)
EigenMetaKernel(Evaluator memcopied_eval, Index size) {

  const Index first_index = blockIdx.x * blockDim.x + threadIdx.x;
  const Index step_size = blockDim.x * gridDim.x;

  // Cuda memcopies the kernel arguments. That's fine for POD, but for more
  // complex types such as evaluators we should really conform to the C++
  // standard and call a proper copy constructor.
  Evaluator eval(memcopied_eval);

  const bool vectorizable = Evaluator::PacketAccess & Evaluator::IsAligned;
  EigenMetaKernelEval<Evaluator, Index, vectorizable>::run(eval, first_index, size, step_size);
}

/*static*/
template <typename Expression, bool Vectorizable>
inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run(
    const Expression& expr, const GpuDevice& device) {
  TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
  const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
  if (needs_assign) {
    const int block_size = device.maxCudaThreadsPerBlock();
    const int max_blocks = device.getNumCudaMultiProcessors() *
                           device.maxCudaThreadsPerMultiProcessor() / block_size;
    const Index size = array_prod(evaluator.dimensions());
    // Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
    const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1);

    LAUNCH_CUDA_KERNEL(
        (EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index>),
        num_blocks, block_size, 0, device, evaluator, size);
  }
  evaluator.cleanup();
}

#endif  // __CUDACC__
#endif  // EIGEN_USE_GPU

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H