1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
namespace Eigen {
/** \class TensorEvaluator
* \ingroup CXX11_Tensor_Module
*
* \brief The tensor evaluator classes.
*
* These classes are responsible for the evaluation of the tensor expression.
*
* TODO: add support for more types of expressions, in particular expressions
* leading to lvalues (slicing, reshaping, etc...)
*/
// Generic evaluator
template<typename Derived, typename Device>
struct TensorEvaluator
{
typedef typename Derived::Index Index;
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Scalar CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef typename Derived::Dimensions Dimensions;
// NumDimensions is -1 for variable dim tensors
static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
internal::traits<Derived>::NumDimensions : 0;
enum {
IsAligned = Derived::IsAligned,
PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
Layout = Derived::Layout,
CoordAccess = NumCoords > 0,
RawAccess = true
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
: m_data(const_cast<Scalar*>(m.data())), m_dims(m.dimensions()), m_device(device)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* dest) {
if (dest) {
m_device.memcpy((void*)dest, m_data, sizeof(Scalar) * m_dims.TotalSize());
return false;
}
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
eigen_assert(m_data);
return m_data[index];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
eigen_assert(m_data);
return m_data[index];
}
template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
PacketReturnType packet(Index index) const
{
return internal::ploadt<PacketReturnType, LoadMode>(m_data + index);
}
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketReturnType& x)
{
return internal::pstoret<Scalar, PacketReturnType, StoreMode>(m_data + index, x);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
eigen_assert(m_data);
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
return m_data[m_dims.IndexOfColMajor(coords)];
} else {
return m_data[m_dims.IndexOfRowMajor(coords)];
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<DenseIndex, NumCoords>& coords) {
eigen_assert(m_data);
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
return m_data[m_dims.IndexOfColMajor(coords)];
} else {
return m_data[m_dims.IndexOfRowMajor(coords)];
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
internal::unpacket_traits<PacketReturnType>::size);
}
EIGEN_DEVICE_FUNC Scalar* data() const { return m_data; }
protected:
Scalar* m_data;
Dimensions m_dims;
const Device& m_device;
};
namespace {
template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T loadConstant(const T* address) {
return *address;
}
// Use the texture cache on CUDA devices whenever possible
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float loadConstant(const float* address) {
return __ldg(address);
}
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double loadConstant(const double* address) {
return __ldg(address);
}
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
Eigen::half loadConstant(const Eigen::half* address) {
return Eigen::half(half_impl::raw_uint16_to_half(__ldg(&address->x)));
}
#endif
}
// Default evaluator for rvalues
template<typename Derived, typename Device>
struct TensorEvaluator<const Derived, Device>
{
typedef typename Derived::Index Index;
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Scalar CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef typename Derived::Dimensions Dimensions;
// NumDimensions is -1 for variable dim tensors
static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
internal::traits<Derived>::NumDimensions : 0;
enum {
IsAligned = Derived::IsAligned,
PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
Layout = Derived::Layout,
CoordAccess = NumCoords > 0,
RawAccess = true
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
: m_data(m.data()), m_dims(m.dimensions()), m_device(device)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data) {
m_device.memcpy((void*)data, m_data, m_dims.TotalSize() * sizeof(Scalar));
return false;
}
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
eigen_assert(m_data);
return loadConstant(m_data+index);
}
template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
PacketReturnType packet(Index index) const
{
return internal::ploadt_ro<PacketReturnType, LoadMode>(m_data + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
eigen_assert(m_data);
const Index index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_dims.IndexOfColMajor(coords)
: m_dims.IndexOfRowMajor(coords);
return loadConstant(m_data+index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
internal::unpacket_traits<PacketReturnType>::size);
}
EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; }
protected:
const Scalar* m_data;
Dimensions m_dims;
const Device& m_device;
};
// -------------------- CwiseNullaryOp --------------------
template<typename NullaryOp, typename ArgType, typename Device>
struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device>
{
typedef TensorCwiseNullaryOp<NullaryOp, ArgType> XprType;
enum {
IsAligned = true,
PacketAccess = internal::functor_traits<NullaryOp>::PacketAccess,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC
TensorEvaluator(const XprType& op, const Device& device)
: m_functor(op.functor()), m_argImpl(op.nestedExpression(), device), m_wrapper()
{ }
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { return true; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_wrapper(m_functor, index);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_wrapper.template packetOp<PacketReturnType, Index>(m_functor, index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
costPerCoeff(bool vectorized) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
internal::unpacket_traits<PacketReturnType>::size);
}
EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
private:
const NullaryOp m_functor;
TensorEvaluator<ArgType, Device> m_argImpl;
const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper;
};
// -------------------- CwiseUnaryOp --------------------
template<typename UnaryOp, typename ArgType, typename Device>
struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>
{
typedef TensorCwiseUnaryOp<UnaryOp, ArgType> XprType;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess & internal::functor_traits<UnaryOp>::PacketAccess,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
: m_functor(op.functor()),
m_argImpl(op.nestedExpression(), device)
{ }
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
m_argImpl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_argImpl.cleanup();
}
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_functor(m_argImpl.coeff(index));
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_functor.packetOp(m_argImpl.template packet<LoadMode>(index));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
const double functor_cost = internal::functor_traits<UnaryOp>::Cost;
return m_argImpl.costPerCoeff(vectorized) +
TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
private:
const UnaryOp m_functor;
TensorEvaluator<ArgType, Device> m_argImpl;
};
// -------------------- CwiseBinaryOp --------------------
template<typename BinaryOp, typename LeftArgType, typename RightArgType, typename Device>
struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType>, Device>
{
typedef TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType> XprType;
enum {
IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess &
internal::functor_traits<BinaryOp>::PacketAccess,
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
: m_functor(op.functor()),
m_leftImpl(op.lhsExpression(), device),
m_rightImpl(op.rhsExpression(), device)
{
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
}
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
typedef typename TensorEvaluator<LeftArgType, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
{
// TODO: use right impl instead if right impl dimensions are known at compile time.
return m_leftImpl.dimensions();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
m_leftImpl.evalSubExprsIfNeeded(NULL);
m_rightImpl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_leftImpl.cleanup();
m_rightImpl.cleanup();
}
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_functor(m_leftImpl.coeff(index), m_rightImpl.coeff(index));
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_functor.packetOp(m_leftImpl.template packet<LoadMode>(index), m_rightImpl.template packet<LoadMode>(index));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
costPerCoeff(bool vectorized) const {
const double functor_cost = internal::functor_traits<BinaryOp>::Cost;
return m_leftImpl.costPerCoeff(vectorized) +
m_rightImpl.costPerCoeff(vectorized) +
TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
private:
const BinaryOp m_functor;
TensorEvaluator<LeftArgType, Device> m_leftImpl;
TensorEvaluator<RightArgType, Device> m_rightImpl;
};
// -------------------- CwiseTernaryOp --------------------
template<typename TernaryOp, typename Arg1Type, typename Arg2Type, typename Arg3Type, typename Device>
struct TensorEvaluator<const TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type>, Device>
{
typedef TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type> XprType;
enum {
IsAligned = TensorEvaluator<Arg1Type, Device>::IsAligned & TensorEvaluator<Arg2Type, Device>::IsAligned & TensorEvaluator<Arg3Type, Device>::IsAligned,
PacketAccess = TensorEvaluator<Arg1Type, Device>::PacketAccess & TensorEvaluator<Arg2Type, Device>::PacketAccess & TensorEvaluator<Arg3Type, Device>::PacketAccess &
internal::functor_traits<TernaryOp>::PacketAccess,
Layout = TensorEvaluator<Arg1Type, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
: m_functor(op.functor()),
m_arg1Impl(op.arg1Expression(), device),
m_arg2Impl(op.arg2Expression(), device),
m_arg3Impl(op.arg3Expression(), device)
{
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<Arg1Type, Device>::Layout) == static_cast<int>(TensorEvaluator<Arg3Type, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
typename internal::traits<Arg2Type>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
typename internal::traits<Arg3Type>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
typename internal::traits<Arg2Type>::Index>::value),
STORAGE_INDEX_MUST_MATCH)
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
typename internal::traits<Arg3Type>::Index>::value),
STORAGE_INDEX_MUST_MATCH)
eigen_assert(dimensions_match(m_arg1Impl.dimensions(), m_arg2Impl.dimensions()) && dimensions_match(m_arg1Impl.dimensions(), m_arg3Impl.dimensions()));
}
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
typedef typename TensorEvaluator<Arg1Type, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
{
// TODO: use arg2 or arg3 dimensions if they are known at compile time.
return m_arg1Impl.dimensions();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
m_arg1Impl.evalSubExprsIfNeeded(NULL);
m_arg2Impl.evalSubExprsIfNeeded(NULL);
m_arg3Impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_arg1Impl.cleanup();
m_arg2Impl.cleanup();
m_arg3Impl.cleanup();
}
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index));
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_functor.packetOp(m_arg1Impl.template packet<LoadMode>(index),
m_arg2Impl.template packet<LoadMode>(index),
m_arg3Impl.template packet<LoadMode>(index));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
costPerCoeff(bool vectorized) const {
const double functor_cost = internal::functor_traits<TernaryOp>::Cost;
return m_arg1Impl.costPerCoeff(vectorized) +
m_arg2Impl.costPerCoeff(vectorized) +
m_arg3Impl.costPerCoeff(vectorized) +
TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
private:
const TernaryOp m_functor;
TensorEvaluator<Arg1Type, Device> m_arg1Impl;
TensorEvaluator<Arg2Type, Device> m_arg2Impl;
TensorEvaluator<Arg3Type, Device> m_arg3Impl;
};
// -------------------- SelectOp --------------------
template<typename IfArgType, typename ThenArgType, typename ElseArgType, typename Device>
struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device>
{
typedef TensorSelectOp<IfArgType, ThenArgType, ElseArgType> XprType;
typedef typename XprType::Scalar Scalar;
enum {
IsAligned = TensorEvaluator<ThenArgType, Device>::IsAligned & TensorEvaluator<ElseArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ThenArgType, Device>::PacketAccess & TensorEvaluator<ElseArgType, Device>::PacketAccess &
internal::packet_traits<Scalar>::HasBlend,
Layout = TensorEvaluator<IfArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
: m_condImpl(op.ifExpression(), device),
m_thenImpl(op.thenExpression(), device),
m_elseImpl(op.elseExpression(), device)
{
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ThenArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ElseArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
eigen_assert(dimensions_match(m_condImpl.dimensions(), m_thenImpl.dimensions()));
eigen_assert(dimensions_match(m_thenImpl.dimensions(), m_elseImpl.dimensions()));
}
typedef typename XprType::Index Index;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
typedef typename TensorEvaluator<IfArgType, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
{
// TODO: use then or else impl instead if they happen to be known at compile time.
return m_condImpl.dimensions();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
m_condImpl.evalSubExprsIfNeeded(NULL);
m_thenImpl.evalSubExprsIfNeeded(NULL);
m_elseImpl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_condImpl.cleanup();
m_thenImpl.cleanup();
m_elseImpl.cleanup();
}
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_condImpl.coeff(index) ? m_thenImpl.coeff(index) : m_elseImpl.coeff(index);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
{
internal::Selector<PacketSize> select;
for (Index i = 0; i < PacketSize; ++i) {
select.select[i] = m_condImpl.coeff(index+i);
}
return internal::pblend(select,
m_thenImpl.template packet<LoadMode>(index),
m_elseImpl.template packet<LoadMode>(index));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
costPerCoeff(bool vectorized) const {
return m_condImpl.costPerCoeff(vectorized) +
m_thenImpl.costPerCoeff(vectorized)
.cwiseMax(m_elseImpl.costPerCoeff(vectorized));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return NULL; }
private:
TensorEvaluator<IfArgType, Device> m_condImpl;
TensorEvaluator<ThenArgType, Device> m_thenImpl;
TensorEvaluator<ElseArgType, Device> m_elseImpl;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
|