aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h
blob: 3aff7fa0142d46ef09206942ff78a23eea94b698 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H

namespace Eigen {

/** \class TensorEvaluator
  * \ingroup CXX11_Tensor_Module
  *
  * \brief The tensor evaluator classes.
  *
  * These classes are responsible for the evaluation of the tensor expression.
  *
  * TODO: add support for more types of expressions, in particular expressions
  * leading to lvalues (slicing, reshaping, etc...)
  */

// Generic evaluator
template<typename Derived, typename Device>
struct TensorEvaluator
{
  typedef typename Derived::Index Index;
  typedef typename Derived::Scalar Scalar;
  typedef typename Derived::Scalar CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef typename Derived::Dimensions Dimensions;
  typedef Derived XprType;
  static const int PacketSize =  PacketType<CoeffReturnType, Device>::size;
  typedef typename internal::traits<Derived>::template MakePointer<Scalar>::Type TensorPointerType;
  typedef StorageMemory<Scalar, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;

  // NumDimensions is -1 for variable dim tensors
  static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
                               internal::traits<Derived>::NumDimensions : 0;

  enum {
    IsAligned          = Derived::IsAligned,
    PacketAccess       = (PacketType<CoeffReturnType, Device>::size > 1),
    BlockAccess        = internal::is_arithmetic<typename internal::remove_const<Scalar>::type>::value,
    PreferBlockAccess  = false,
    Layout             = Derived::Layout,
    CoordAccess        = NumCoords > 0,
    RawAccess          = true
  };

  typedef typename internal::remove_const<Scalar>::type ScalarNoConst;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<NumCoords, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

  typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumCoords,
                                                     Layout, Index>
      TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
      : m_data(device.get((const_cast<TensorPointerType>(m.data())))),
        m_dims(m.dimensions()),
        m_device(device)
  { }


  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType dest) {
    if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && dest) {
      m_device.memcpy((void*)(m_device.get(dest)), m_device.get(m_data), m_dims.TotalSize() * sizeof(Scalar));
      return false;
    }
    return true;
  }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType dest, EvalSubExprsCallback done) {
    // TODO(ezhulenev): ThreadPoolDevice memcpy is blockign operation.
    done(evalSubExprsIfNeeded(dest));
  }
#endif  // EIGEN_USE_THREADS

  EIGEN_STRONG_INLINE void cleanup() {}

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
    eigen_assert(m_data != NULL);
    return m_data[index];
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) {
    eigen_assert(m_data != NULL);
    return m_data[index];
  }

  template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  PacketReturnType packet(Index index) const
  {
    return internal::ploadt<PacketReturnType, LoadMode>(m_data + index);
  }

  // Return a packet starting at `index` where `umask` specifies which elements
  // have to be loaded. Type/size of mask depends on PacketReturnType, e.g. for
  // Packet16f, `umask` is of type uint16_t and if a bit is 1, corresponding
  // float element will be loaded, otherwise 0 will be loaded.
  // Function has been templatized to enable Sfinae.
  template <typename PacketReturnTypeT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  typename internal::enable_if<internal::unpacket_traits<PacketReturnTypeT>::masked_load_available, PacketReturnTypeT>::type
  partialPacket(Index index, typename internal::unpacket_traits<PacketReturnTypeT>::mask_t umask) const
  {
    return internal::ploadu<PacketReturnTypeT>(m_data + index, umask);
  }

  template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  void writePacket(Index index, const PacketReturnType& x)
  {
    return internal::pstoret<Scalar, PacketReturnType, StoreMode>(m_data + index, x);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
    eigen_assert(m_data != NULL);
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      return m_data[m_dims.IndexOfColMajor(coords)];
    } else {
      return m_data[m_dims.IndexOfRowMajor(coords)];
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType&
  coeffRef(const array<DenseIndex, NumCoords>& coords) {
    eigen_assert(m_data != NULL);
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      return m_data[m_dims.IndexOfColMajor(coords)];
    } else {
      return m_data[m_dims.IndexOfRowMajor(coords)];
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
                        PacketType<CoeffReturnType, Device>::size);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  internal::TensorBlockResourceRequirements getResourceRequirements() const {
    return internal::TensorBlockResourceRequirements::any();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
          bool /*root_of_expr_ast*/ = false) const {
    assert(m_data != NULL);
    return TensorBlock::materialize(m_data, m_dims, desc, scratch);
  }

  template<typename TensorBlock>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(
      const TensorBlockDesc& desc, const TensorBlock& block) {
    assert(m_data != NULL);

    typedef typename TensorBlock::XprType TensorBlockExpr;
    typedef internal::TensorBlockAssignment<Scalar, NumCoords, TensorBlockExpr,
                                            Index>
        TensorBlockAssign;

    TensorBlockAssign::Run(
        TensorBlockAssign::target(desc.dimensions(),
                                  internal::strides<Layout>(m_dims), m_data,
                                  desc.offset()),
        block.expr());
  }

  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; }

#ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_data.bind(cgh);
  }
#endif
 protected:
  EvaluatorPointerType m_data;
  Dimensions m_dims;
  const Device EIGEN_DEVICE_REF m_device;
};

namespace {
template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T loadConstant(const T* address) {
  return *address;
}
// Use the texture cache on CUDA devices whenever possible
#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float loadConstant(const float* address) {
  return __ldg(address);
}
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double loadConstant(const double* address) {
  return __ldg(address);
}
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
Eigen::half loadConstant(const Eigen::half* address) {
  return Eigen::half(half_impl::raw_uint16_to_half(__ldg(&address->x)));
}
#endif
#ifdef EIGEN_USE_SYCL
// overload of load constant should be implemented here based on range access
template <cl::sycl::access::mode AcMd, typename T>
T &loadConstant(const Eigen::TensorSycl::internal::RangeAccess<AcMd, T> &address) {
  return *address;
}
#endif
}


// Default evaluator for rvalues
template<typename Derived, typename Device>
struct TensorEvaluator<const Derived, Device>
{
  typedef typename Derived::Index Index;
  typedef typename Derived::Scalar Scalar;
  typedef typename Derived::Scalar CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef typename Derived::Dimensions Dimensions;
  typedef const Derived XprType;
  typedef typename internal::traits<Derived>::template MakePointer<const Scalar>::Type TensorPointerType;
  typedef StorageMemory<const Scalar, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;

  typedef typename internal::remove_const<Scalar>::type ScalarNoConst;

  // NumDimensions is -1 for variable dim tensors
  static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
                               internal::traits<Derived>::NumDimensions : 0;
  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;

  enum {
    IsAligned         = Derived::IsAligned,
    PacketAccess      = (PacketType<CoeffReturnType, Device>::size > 1),
    BlockAccess       = internal::is_arithmetic<ScalarNoConst>::value,
    PreferBlockAccess = false,
    Layout            = Derived::Layout,
    CoordAccess       = NumCoords > 0,
    RawAccess         = true
  };

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<NumCoords, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

  typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumCoords,
                                                     Layout, Index>
      TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
      : m_data(device.get(m.data())), m_dims(m.dimensions()), m_device(device)
  { }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
    if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data) {
      m_device.memcpy((void*)(m_device.get(data)),m_device.get(m_data), m_dims.TotalSize() * sizeof(Scalar));
      return false;
    }
    return true;
  }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType dest, EvalSubExprsCallback done) {
    // TODO(ezhulenev): ThreadPoolDevice memcpy is a blockign operation.
    done(evalSubExprsIfNeeded(dest));
  }
#endif  // EIGEN_USE_THREADS

  EIGEN_STRONG_INLINE void cleanup() { }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
    eigen_assert(m_data != NULL);
    return loadConstant(m_data+index);
  }

  template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  PacketReturnType packet(Index index) const
  {
    return internal::ploadt_ro<PacketReturnType, LoadMode>(m_data + index);
  }

  // Return a packet starting at `index` where `umask` specifies which elements
  // have to be loaded. Type/size of mask depends on PacketReturnType, e.g. for
  // Packet16f, `umask` is of type uint16_t and if a bit is 1, corresponding
  // float element will be loaded, otherwise 0 will be loaded.
  // Function has been templatized to enable Sfinae.
  template <typename PacketReturnTypeT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  typename internal::enable_if<internal::unpacket_traits<PacketReturnTypeT>::masked_load_available, PacketReturnTypeT>::type
  partialPacket(Index index, typename internal::unpacket_traits<PacketReturnTypeT>::mask_t umask) const
  {
    return internal::ploadu<PacketReturnTypeT>(m_data + index, umask);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
    eigen_assert(m_data != NULL);
    const Index index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_dims.IndexOfColMajor(coords)
                        : m_dims.IndexOfRowMajor(coords);
    return loadConstant(m_data+index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
                        PacketType<CoeffReturnType, Device>::size);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  internal::TensorBlockResourceRequirements getResourceRequirements() const {
    return internal::TensorBlockResourceRequirements::any();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
          bool /*root_of_expr_ast*/ = false) const {
    assert(m_data != NULL);
    return TensorBlock::materialize(m_data, m_dims, desc, scratch);
  }

  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; }
#ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_data.bind(cgh);
  }
#endif
 protected:
  EvaluatorPointerType m_data;
  Dimensions m_dims;
  const Device EIGEN_DEVICE_REF m_device;
};




// -------------------- CwiseNullaryOp --------------------

template<typename NullaryOp, typename ArgType, typename Device>
struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device>
{
  typedef TensorCwiseNullaryOp<NullaryOp, ArgType> XprType;

  TensorEvaluator(const XprType& op, const Device& device)
      : m_functor(op.functor()), m_argImpl(op.nestedExpression(), device), m_wrapper()
  { }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
  typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;

  enum {
    IsAligned = true,
    PacketAccess = internal::functor_traits<NullaryOp>::PacketAccess
    #ifdef EIGEN_USE_SYCL
    &&  (PacketType<CoeffReturnType, Device>::size >1)
    #endif
    ,
    BlockAccess = false,
    PreferBlockAccess = false,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,  // to be implemented
    RawAccess = false
  };

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockNotImplemented TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { return true; }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType, EvalSubExprsCallback done) {
    done(true);
  }
#endif  // EIGEN_USE_THREADS

  EIGEN_STRONG_INLINE void cleanup() { }

  EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
  {
    return m_wrapper(m_functor, index);
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    return m_wrapper.template packetOp<PacketReturnType, Index>(m_functor, index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
  costPerCoeff(bool vectorized) const {
    return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
                        PacketType<CoeffReturnType, Device>::size);
  }

  EIGEN_DEVICE_FUNC  EvaluatorPointerType data() const { return NULL; }

#ifdef EIGEN_USE_SYCL
   // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_argImpl.bind(cgh);
  }
#endif

 private:
  const NullaryOp m_functor;
  TensorEvaluator<ArgType, Device> m_argImpl;
  const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper;
};



// -------------------- CwiseUnaryOp --------------------

template<typename UnaryOp, typename ArgType, typename Device>
struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>
{
  typedef TensorCwiseUnaryOp<UnaryOp, ArgType> XprType;

  enum {
    IsAligned          = TensorEvaluator<ArgType, Device>::IsAligned,
    PacketAccess       = int(TensorEvaluator<ArgType, Device>::PacketAccess) &
                         int(internal::functor_traits<UnaryOp>::PacketAccess),
    BlockAccess        = TensorEvaluator<ArgType, Device>::BlockAccess,
    PreferBlockAccess  = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
    Layout             = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess        = false,  // to be implemented
    RawAccess          = false
  };

  TensorEvaluator(const XprType& op, const Device& device)
    : m_device(device),
      m_functor(op.functor()),
      m_argImpl(op.nestedExpression(), device)
  { }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
  typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
  typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;
  static const int NumDims = internal::array_size<Dimensions>::value;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

  typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock
      ArgTensorBlock;

  typedef internal::TensorCwiseUnaryBlock<UnaryOp, ArgTensorBlock>
      TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
    m_argImpl.evalSubExprsIfNeeded(NULL);
    return true;
  }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType, EvalSubExprsCallback done) {
    m_argImpl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
  }
#endif  // EIGEN_USE_THREADS

  EIGEN_STRONG_INLINE void cleanup() {
    m_argImpl.cleanup();
  }

  EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
  {
    return m_functor(m_argImpl.coeff(index));
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    return m_functor.packetOp(m_argImpl.template packet<LoadMode>(index));
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    const double functor_cost = internal::functor_traits<UnaryOp>::Cost;
    return m_argImpl.costPerCoeff(vectorized) +
        TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  internal::TensorBlockResourceRequirements getResourceRequirements() const {
    static const double functor_cost = internal::functor_traits<UnaryOp>::Cost;
    return m_argImpl.getResourceRequirements().addCostPerCoeff(
        {0, 0, functor_cost / PacketSize});
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
          bool /*root_of_expr_ast*/ = false) const {
    return TensorBlock(m_argImpl.block(desc, scratch), m_functor);
  }

  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }

#ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const{
    m_argImpl.bind(cgh);
  }
#endif


 private:
  const Device EIGEN_DEVICE_REF m_device;
  const UnaryOp m_functor;
  TensorEvaluator<ArgType, Device> m_argImpl;
};


// -------------------- CwiseBinaryOp --------------------

template<typename BinaryOp, typename LeftArgType, typename RightArgType, typename Device>
struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType>, Device>
{
  typedef TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType> XprType;

  enum {
    IsAligned         = int(TensorEvaluator<LeftArgType, Device>::IsAligned) &
                        int(TensorEvaluator<RightArgType, Device>::IsAligned),
    PacketAccess      = int(TensorEvaluator<LeftArgType, Device>::PacketAccess) &
                        int(TensorEvaluator<RightArgType, Device>::PacketAccess) &
                        int(internal::functor_traits<BinaryOp>::PacketAccess),
    BlockAccess       = int(TensorEvaluator<LeftArgType, Device>::BlockAccess) &
                        int(TensorEvaluator<RightArgType, Device>::BlockAccess),
    PreferBlockAccess = int(TensorEvaluator<LeftArgType, Device>::PreferBlockAccess) |
                        int(TensorEvaluator<RightArgType, Device>::PreferBlockAccess),
    Layout            = TensorEvaluator<LeftArgType, Device>::Layout,
    CoordAccess       = false,  // to be implemented
    RawAccess         = false
  };

  TensorEvaluator(const XprType& op, const Device& device)
    : m_device(device),
      m_functor(op.functor()),
      m_leftImpl(op.lhsExpression(), device),
      m_rightImpl(op.rhsExpression(), device)
  {
    EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
    eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
  }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
  typedef typename TensorEvaluator<LeftArgType, Device>::Dimensions Dimensions;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;

  static const int NumDims = internal::array_size<
      typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

  typedef typename TensorEvaluator<const LeftArgType, Device>::TensorBlock
      LeftTensorBlock;
  typedef typename TensorEvaluator<const RightArgType, Device>::TensorBlock
      RightTensorBlock;

  typedef internal::TensorCwiseBinaryBlock<BinaryOp, LeftTensorBlock,
                                           RightTensorBlock>
      TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
  {
    // TODO: use right impl instead if right impl dimensions are known at compile time.
    return m_leftImpl.dimensions();
  }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
    m_leftImpl.evalSubExprsIfNeeded(NULL);
    m_rightImpl.evalSubExprsIfNeeded(NULL);
    return true;
  }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType, EvalSubExprsCallback done) {
    // TODO(ezhulenev): Evaluate two expression in parallel?
    m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done](bool) {
      m_rightImpl.evalSubExprsIfNeededAsync(nullptr,
                                            [done](bool) { done(true); });
    });
  }
#endif  // EIGEN_USE_THREADS

  EIGEN_STRONG_INLINE void cleanup() {
    m_leftImpl.cleanup();
    m_rightImpl.cleanup();
  }

  EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
  {
    return m_functor(m_leftImpl.coeff(index), m_rightImpl.coeff(index));
  }
  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    return m_functor.packetOp(m_leftImpl.template packet<LoadMode>(index), m_rightImpl.template packet<LoadMode>(index));
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
  costPerCoeff(bool vectorized) const {
    const double functor_cost = internal::functor_traits<BinaryOp>::Cost;
    return m_leftImpl.costPerCoeff(vectorized) +
           m_rightImpl.costPerCoeff(vectorized) +
           TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  internal::TensorBlockResourceRequirements getResourceRequirements() const {
    static const double functor_cost = internal::functor_traits<BinaryOp>::Cost;
    return internal::TensorBlockResourceRequirements::merge(
               m_leftImpl.getResourceRequirements(),
               m_rightImpl.getResourceRequirements())
        .addCostPerCoeff({0, 0, functor_cost / PacketSize});
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
          bool /*root_of_expr_ast*/ = false) const {
    desc.DropDestinationBuffer();
    return TensorBlock(m_leftImpl.block(desc, scratch),
                         m_rightImpl.block(desc, scratch), m_functor);
  }

  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }

  #ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_leftImpl.bind(cgh);
    m_rightImpl.bind(cgh);
  }
  #endif
 private:
  const Device EIGEN_DEVICE_REF m_device;
  const BinaryOp m_functor;
  TensorEvaluator<LeftArgType, Device> m_leftImpl;
  TensorEvaluator<RightArgType, Device> m_rightImpl;
};

// -------------------- CwiseTernaryOp --------------------

template<typename TernaryOp, typename Arg1Type, typename Arg2Type, typename Arg3Type, typename Device>
struct TensorEvaluator<const TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type>, Device>
{
  typedef TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type> XprType;

  enum {
    IsAligned = TensorEvaluator<Arg1Type, Device>::IsAligned & TensorEvaluator<Arg2Type, Device>::IsAligned & TensorEvaluator<Arg3Type, Device>::IsAligned,
    PacketAccess      = TensorEvaluator<Arg1Type, Device>::PacketAccess &&
                        TensorEvaluator<Arg2Type, Device>::PacketAccess &&
                        TensorEvaluator<Arg3Type, Device>::PacketAccess &&
                        internal::functor_traits<TernaryOp>::PacketAccess,
    BlockAccess       = false,
    PreferBlockAccess = TensorEvaluator<Arg1Type, Device>::PreferBlockAccess ||
                        TensorEvaluator<Arg2Type, Device>::PreferBlockAccess ||
                        TensorEvaluator<Arg3Type, Device>::PreferBlockAccess,
    Layout            = TensorEvaluator<Arg1Type, Device>::Layout,
    CoordAccess       = false,  // to be implemented
    RawAccess         = false
  };

  TensorEvaluator(const XprType& op, const Device& device)
    : m_functor(op.functor()),
      m_arg1Impl(op.arg1Expression(), device),
      m_arg2Impl(op.arg2Expression(), device),
      m_arg3Impl(op.arg3Expression(), device)
  {
    EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<Arg1Type, Device>::Layout) == static_cast<int>(TensorEvaluator<Arg3Type, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);

    EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
                         typename internal::traits<Arg2Type>::StorageKind>::value),
                        STORAGE_KIND_MUST_MATCH)
    EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
                         typename internal::traits<Arg3Type>::StorageKind>::value),
                        STORAGE_KIND_MUST_MATCH)
    EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
                         typename internal::traits<Arg2Type>::Index>::value),
                        STORAGE_INDEX_MUST_MATCH)
    EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
                         typename internal::traits<Arg3Type>::Index>::value),
                        STORAGE_INDEX_MUST_MATCH)

    eigen_assert(dimensions_match(m_arg1Impl.dimensions(), m_arg2Impl.dimensions()) && dimensions_match(m_arg1Impl.dimensions(), m_arg3Impl.dimensions()));
  }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
  typedef typename TensorEvaluator<Arg1Type, Device>::Dimensions Dimensions;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockNotImplemented TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
  {
    // TODO: use arg2 or arg3 dimensions if they are known at compile time.
    return m_arg1Impl.dimensions();
  }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
    m_arg1Impl.evalSubExprsIfNeeded(NULL);
    m_arg2Impl.evalSubExprsIfNeeded(NULL);
    m_arg3Impl.evalSubExprsIfNeeded(NULL);
    return true;
  }
  EIGEN_STRONG_INLINE void cleanup() {
    m_arg1Impl.cleanup();
    m_arg2Impl.cleanup();
    m_arg3Impl.cleanup();
  }

  EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
  {
    return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index));
  }
  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    return m_functor.packetOp(m_arg1Impl.template packet<LoadMode>(index),
                              m_arg2Impl.template packet<LoadMode>(index),
                              m_arg3Impl.template packet<LoadMode>(index));
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
  costPerCoeff(bool vectorized) const {
    const double functor_cost = internal::functor_traits<TernaryOp>::Cost;
    return m_arg1Impl.costPerCoeff(vectorized) +
           m_arg2Impl.costPerCoeff(vectorized) +
           m_arg3Impl.costPerCoeff(vectorized) +
           TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }

#ifdef EIGEN_USE_SYCL
   // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_arg1Impl.bind(cgh);
    m_arg2Impl.bind(cgh);
    m_arg3Impl.bind(cgh);
  }
#endif

 private:
  const TernaryOp m_functor;
  TensorEvaluator<Arg1Type, Device> m_arg1Impl;
  TensorEvaluator<Arg2Type, Device> m_arg2Impl;
  TensorEvaluator<Arg3Type, Device> m_arg3Impl;
};


// -------------------- SelectOp --------------------

template<typename IfArgType, typename ThenArgType, typename ElseArgType, typename Device>
struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device>
{
  typedef TensorSelectOp<IfArgType, ThenArgType, ElseArgType> XprType;
  typedef typename XprType::Scalar Scalar;

  enum {
    IsAligned         = TensorEvaluator<ThenArgType, Device>::IsAligned &
                        TensorEvaluator<ElseArgType, Device>::IsAligned,
    PacketAccess      = TensorEvaluator<ThenArgType, Device>::PacketAccess &
                        TensorEvaluator<ElseArgType, Device>::PacketAccess &
                        PacketType<Scalar, Device>::HasBlend,
    BlockAccess       = TensorEvaluator<IfArgType, Device>::BlockAccess &&
                        TensorEvaluator<ThenArgType, Device>::BlockAccess &&
                        TensorEvaluator<ElseArgType, Device>::BlockAccess,
    PreferBlockAccess = TensorEvaluator<IfArgType, Device>::PreferBlockAccess ||
                        TensorEvaluator<ThenArgType, Device>::PreferBlockAccess ||
                        TensorEvaluator<ElseArgType, Device>::PreferBlockAccess,
    Layout            = TensorEvaluator<IfArgType, Device>::Layout,
    CoordAccess       = false,  // to be implemented
    RawAccess         = false
  };

  TensorEvaluator(const XprType& op, const Device& device)
    : m_condImpl(op.ifExpression(), device),
      m_thenImpl(op.thenExpression(), device),
      m_elseImpl(op.elseExpression(), device)
  {
    EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ThenArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
    EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ElseArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
    eigen_assert(dimensions_match(m_condImpl.dimensions(), m_thenImpl.dimensions()));
    eigen_assert(dimensions_match(m_thenImpl.dimensions(), m_elseImpl.dimensions()));
  }

  typedef typename XprType::Index Index;
  typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
  typedef typename TensorEvaluator<IfArgType, Device>::Dimensions Dimensions;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;

  static const int NumDims = internal::array_size<Dimensions>::value;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
    typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

  typedef typename TensorEvaluator<const IfArgType, Device>::TensorBlock
      IfArgTensorBlock;
  typedef typename TensorEvaluator<const ThenArgType, Device>::TensorBlock
      ThenArgTensorBlock;
  typedef typename TensorEvaluator<const ElseArgType, Device>::TensorBlock
      ElseArgTensorBlock;

  struct TensorSelectOpBlockFactory {
    template <typename IfArgXprType, typename ThenArgXprType, typename ElseArgXprType>
    struct XprType {
      typedef TensorSelectOp<const IfArgXprType, const ThenArgXprType, const ElseArgXprType> type;
    };

    template <typename IfArgXprType, typename ThenArgXprType, typename ElseArgXprType>
    typename XprType<IfArgXprType, ThenArgXprType, ElseArgXprType>::type expr(
        const IfArgXprType& if_expr, const ThenArgXprType& then_expr, const ElseArgXprType& else_expr) const {
      return typename XprType<IfArgXprType, ThenArgXprType, ElseArgXprType>::type(if_expr, then_expr, else_expr);
    }
  };

  typedef internal::TensorTernaryExprBlock<TensorSelectOpBlockFactory,
                                           IfArgTensorBlock, ThenArgTensorBlock,
                                           ElseArgTensorBlock>
      TensorBlock;
  //===--------------------------------------------------------------------===//

  EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
  {
    // TODO: use then or else impl instead if they happen to be known at compile time.
    return m_condImpl.dimensions();
  }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
    m_condImpl.evalSubExprsIfNeeded(NULL);
    m_thenImpl.evalSubExprsIfNeeded(NULL);
    m_elseImpl.evalSubExprsIfNeeded(NULL);
    return true;
  }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType, EvalSubExprsCallback done) {
    m_condImpl.evalSubExprsIfNeeded(nullptr, [this, done](bool) {
      m_thenImpl.evalSubExprsIfNeeded(nullptr, [this, done](bool) {
        m_elseImpl.evalSubExprsIfNeeded(nullptr, [done](bool) { done(true); });
      });
    });
  }
#endif  // EIGEN_USE_THREADS

  EIGEN_STRONG_INLINE void cleanup() {
    m_condImpl.cleanup();
    m_thenImpl.cleanup();
    m_elseImpl.cleanup();
  }

  EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
  {
    return m_condImpl.coeff(index) ? m_thenImpl.coeff(index) : m_elseImpl.coeff(index);
  }
  template<int LoadMode>
  EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
  {
     internal::Selector<PacketSize> select;
     EIGEN_UNROLL_LOOP
     for (Index i = 0; i < PacketSize; ++i) {
       select.select[i] = m_condImpl.coeff(index+i);
     }
     return internal::pblend(select,
                             m_thenImpl.template packet<LoadMode>(index),
                             m_elseImpl.template packet<LoadMode>(index));

  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
  costPerCoeff(bool vectorized) const {
    return m_condImpl.costPerCoeff(vectorized) +
           m_thenImpl.costPerCoeff(vectorized)
        .cwiseMax(m_elseImpl.costPerCoeff(vectorized));
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  internal::TensorBlockResourceRequirements getResourceRequirements() const {
    auto then_req = m_thenImpl.getResourceRequirements();
    auto else_req = m_elseImpl.getResourceRequirements();

    auto merged_req =
        internal::TensorBlockResourceRequirements::merge(then_req, else_req);
    merged_req.cost_per_coeff =
        then_req.cost_per_coeff.cwiseMax(else_req.cost_per_coeff);

    return internal::TensorBlockResourceRequirements::merge(
        m_condImpl.getResourceRequirements(), merged_req);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
          bool /*root_of_expr_ast*/ = false) const {
    // It's unsafe to pass destination buffer to underlying expressions, because
    // output might be aliased with one of the inputs.
    desc.DropDestinationBuffer();

    return TensorBlock(
        m_condImpl.block(desc, scratch), m_thenImpl.block(desc, scratch),
        m_elseImpl.block(desc, scratch), TensorSelectOpBlockFactory());
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; }

#ifdef EIGEN_USE_SYCL
 // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_condImpl.bind(cgh);
    m_thenImpl.bind(cgh);
    m_elseImpl.bind(cgh);
  }
#endif
 private:
  TensorEvaluator<IfArgType, Device> m_condImpl;
  TensorEvaluator<ThenArgType, Device> m_thenImpl;
  TensorEvaluator<ElseArgType, Device> m_elseImpl;
};


} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H