aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h
blob: a48d035f5aad48f0560e613b8d361f25d1075e30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
#define EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H

namespace Eigen {

/** \class TensorForcedEval
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor reshaping class.
  *
  *
  */
namespace internal {
template<typename XprType, template <class> class MakePointer_>
struct traits<TensorEvalToOp<XprType, MakePointer_> >
{
  // Type promotion to handle the case where the types of the lhs and the rhs are different.
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = XprTraits::NumDimensions;
  static const int Layout = XprTraits::Layout;
  typedef typename MakePointer_<Scalar>::Type PointerType;

  enum {
    Flags = 0
  };
  template <class T>
  struct MakePointer {
    // Intermediate typedef to workaround MSVC issue.
    typedef MakePointer_<T> MakePointerT;
    typedef typename MakePointerT::Type Type;


  };
};

template<typename XprType, template <class> class MakePointer_>
struct eval<TensorEvalToOp<XprType, MakePointer_>, Eigen::Dense>
{
  typedef const TensorEvalToOp<XprType, MakePointer_>& type;
};

template<typename XprType, template <class> class MakePointer_>
struct nested<TensorEvalToOp<XprType, MakePointer_>, 1, typename eval<TensorEvalToOp<XprType, MakePointer_> >::type>
{
  typedef TensorEvalToOp<XprType, MakePointer_> type;
};

}  // end namespace internal




template<typename XprType, template <class> class MakePointer_>
class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType, MakePointer_>, ReadOnlyAccessors>
{
  public:
  typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar;
  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
  typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
  typedef typename MakePointer_<CoeffReturnType>::Type PointerType;
  typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index;

  static const int NumDims = Eigen::internal::traits<TensorEvalToOp>::NumDimensions;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(PointerType buffer, const XprType& expr)
      : m_xpr(expr), m_buffer(buffer) {}

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

    EIGEN_DEVICE_FUNC PointerType buffer() const { return m_buffer; }

  protected:
    typename XprType::Nested m_xpr;
    PointerType m_buffer;
};



template<typename ArgType, typename Device, template <class> class MakePointer_>
struct TensorEvaluator<const TensorEvalToOp<ArgType, MakePointer_>, Device>
{
  typedef TensorEvalToOp<ArgType, MakePointer_> XprType;
  typedef typename ArgType::Scalar Scalar;
  typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
  typedef typename XprType::Index Index;
  typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
  typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
  typedef StorageMemory<CoeffReturnType, Device> Storage;
  typedef typename Storage::Type EvaluatorPointerType;
  enum {
    IsAligned         = TensorEvaluator<ArgType, Device>::IsAligned,
    PacketAccess      = TensorEvaluator<ArgType, Device>::PacketAccess,
    BlockAccess       = true,
    PreferBlockAccess = false,
    Layout            = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess       = false,  // to be implemented
    RawAccess         = true
  };

  static const int NumDims = internal::traits<ArgType>::NumDimensions;

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

  typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock
      ArgTensorBlock;

  typedef internal::TensorBlockAssignment<
      CoeffReturnType, NumDims, typename ArgTensorBlock::XprType, Index>
      TensorBlockAssignment;
  //===--------------------------------------------------------------------===//

  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_buffer(device.get(op.buffer())), m_expression(op.expression()){}


  EIGEN_STRONG_INLINE ~TensorEvaluator() {
  }


  EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType scalar) {
    EIGEN_UNUSED_VARIABLE(scalar);
    eigen_assert(scalar == NULL);
    return m_impl.evalSubExprsIfNeeded(m_buffer);
  }

#ifdef EIGEN_USE_THREADS
  template <typename EvalSubExprsCallback>
  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
      EvaluatorPointerType scalar, EvalSubExprsCallback done) {
    EIGEN_UNUSED_VARIABLE(scalar);
    eigen_assert(scalar == NULL);
    m_impl.evalSubExprsIfNeededAsync(m_buffer, std::move(done));
  }
#endif

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
    m_buffer[i] = m_impl.coeff(i);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
    internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i));
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  internal::TensorBlockResourceRequirements getResourceRequirements() const {
    return m_impl.getResourceRequirements();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalBlock(
      TensorBlockDesc& desc, TensorBlockScratch& scratch) {
    // Add `m_buffer` as destination buffer to the block descriptor.
    desc.template AddDestinationBuffer<Layout>(
        /*dst_base=*/m_buffer + desc.offset(),
        /*dst_strides=*/internal::strides<Layout>(m_impl.dimensions()));

    ArgTensorBlock block =
        m_impl.block(desc, scratch, /*root_of_expr_ast=*/true);

    // If block was evaluated into a destination buffer, there is no need to do
    // an assignment.
    if (block.kind() != internal::TensorBlockKind::kMaterializedInOutput) {
      TensorBlockAssignment::Run(
          TensorBlockAssignment::target(
              desc.dimensions(), internal::strides<Layout>(m_impl.dimensions()),
              m_buffer, desc.offset()),
          block.expr());
    }
    block.cleanup();
  }

  EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    return m_buffer[index];
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    // We assume that evalPacket or evalScalar is called to perform the
    // assignment and account for the cost of the write here.
    return m_impl.costPerCoeff(vectorized) +
        TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_buffer; }
  ArgType expression() const { return m_expression; }
  #ifdef EIGEN_USE_SYCL
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_impl.bind(cgh);
    m_buffer.bind(cgh);
  }
  #endif


 private:
  TensorEvaluator<ArgType, Device> m_impl;
  EvaluatorPointerType m_buffer;
  const ArgType m_expression;
};


} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H