aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h
blob: 26b1f65a88310b5f352bb7aa7be9cbd801b2f112 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
#define EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H

namespace Eigen {

/** \class TensorForcedEval
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor reshaping class.
  *
  *
  */
namespace internal {
template<typename XprType>
struct traits<TensorEvalToOp<XprType> >
{
  // Type promotion to handle the case where the types of the lhs and the rhs are different.
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = XprTraits::NumDimensions;
  static const int Layout = XprTraits::Layout;

  enum {
    Flags = 0
  };
};

template<typename XprType>
struct eval<TensorEvalToOp<XprType>, Eigen::Dense>
{
  typedef const TensorEvalToOp<XprType>& type;
};

template<typename XprType>
struct nested<TensorEvalToOp<XprType>, 1, typename eval<TensorEvalToOp<XprType> >::type>
{
  typedef TensorEvalToOp<XprType> type;
};

}  // end namespace internal




template<typename XprType>
class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType>, ReadOnlyAccessors>
{
  public:
  typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar;
  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
  typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(CoeffReturnType* buffer, const XprType& expr)
      : m_xpr(expr), m_buffer(buffer) {}

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

    EIGEN_DEVICE_FUNC CoeffReturnType* buffer() const { return m_buffer; }

  protected:
    typename XprType::Nested m_xpr;
    CoeffReturnType* m_buffer;
};



template<typename ArgType, typename Device>
struct TensorEvaluator<const TensorEvalToOp<ArgType>, Device>
{
  typedef TensorEvalToOp<ArgType> XprType;
  typedef typename ArgType::Scalar Scalar;
  typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
  typedef typename XprType::Index Index;
  typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;

  enum {
    IsAligned = true,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,  // to be implemented
    RawAccess = true
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_device(device), m_buffer(op.buffer())
  { }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~TensorEvaluator() {
  }

  EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* scalar) {
    EIGEN_UNUSED_VARIABLE(scalar);
    eigen_assert(scalar == NULL);
    return m_impl.evalSubExprsIfNeeded(m_buffer);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
    m_buffer[i] = m_impl.coeff(i);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
    internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i));
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    return m_buffer[index];
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    // We assume that evalPacket or evalScalar is called to perform the
    // assignment and account for the cost of the write here.
    return m_impl.costPerCoeff(vectorized) +
        TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_buffer; }

 private:
  TensorEvaluator<ArgType, Device> m_impl;
  const Device& m_device;
  CoeffReturnType* m_buffer;
};


} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H