aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h
blob: 300ee8ac0096729ae3babc9404c0294aaea75eed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H


namespace Eigen {

// Default device for the machine (typically a single cpu core)
struct DefaultDevice {
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
    ::memcpy(dst, src, n);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
    ::memset(buffer, c, n);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const {
#ifndef __CUDA_ARCH__
    // Running on the host CPU
    return 1;
#else
    // Running on a CUDA device
    return 32;
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
#ifndef __CUDA_ARCH__
    // Running single threaded on the host CPU
    // Should return an enum that encodes the ISA supported by the CPU
    return 1;
#else
    // Running on a CUDA device
    return __CUDA_ARCH__ / 100;
#endif
  }
};


// Multiple cpu cores
// We should really use a thread pool here but first we need to find a portable thread pool library.
#ifdef EIGEN_USE_THREADS

// This defines an interface that ThreadPoolDevice can take to use
// custom thread pools underneath.
class ThreadPoolInterface {
 public:
  virtual void Schedule(std::function<void()> fn) = 0;

  virtual ~ThreadPoolInterface() {}
};

// The implementation of the ThreadPool type ensures that the Schedule method
// runs the functions it is provided in FIFO order when the scheduling is done
// by a single thread.
class ThreadPool : public ThreadPoolInterface {
 public:
  // Construct a pool that contains "num_threads" threads.
  explicit ThreadPool(int num_threads) {
    for (int i = 0; i < num_threads; i++) {
      threads_.push_back(new std::thread([this]() { WorkerLoop(); }));
    }
  }

  // Wait until all scheduled work has finished and then destroy the
  // set of threads.
  ~ThreadPool()
  {
    {
      // Wait for all work to get done.
      std::unique_lock<std::mutex> l(mu_);
      empty_.wait(l, [this]() { return pending_.empty(); });
      exiting_ = true;

      // Wakeup all waiters.
      for (auto w : waiters_) {
        w->ready = true;
        w->work = nullptr;
        w->cv.notify_one();
      }
    }

    // Wait for threads to finish.
    for (auto t : threads_) {
      t->join();
      delete t;
    }
  }

  // Schedule fn() for execution in the pool of threads. The functions are
  // executed in the order in which they are scheduled.
  void Schedule(std::function<void()> fn) {
    std::unique_lock<std::mutex> l(mu_);
    if (waiters_.empty()) {
      pending_.push_back(fn);
    } else {
      Waiter* w = waiters_.back();
      waiters_.pop_back();
      w->ready = true;
      w->work = fn;
      w->cv.notify_one();
    }
  }

 protected:
  void WorkerLoop() {
    std::unique_lock<std::mutex> l(mu_);
    Waiter w;
    while (!exiting_) {
      std::function<void()> fn;
      if (pending_.empty()) {
        // Wait for work to be assigned to me
        w.ready = false;
        waiters_.push_back(&w);
        w.cv.wait(l, [&w]() { return w.ready; });
        fn = w.work;
        w.work = nullptr;
      } else {
        // Pick up pending work
        fn = pending_.front();
        pending_.pop_front();
        if (pending_.empty()) {
          empty_.notify_all();
        }
      }
      if (fn) {
        mu_.unlock();
        fn();
        mu_.lock();
      }
    }
  }

 private:
  struct Waiter {
    std::condition_variable cv;
    std::function<void()> work;
    bool ready;
  };

  std::mutex mu_;
  std::vector<std::thread*> threads_;               // All threads
  std::vector<Waiter*> waiters_;                    // Stack of waiting threads.
  std::deque<std::function<void()>> pending_;       // Queue of pending work
  std::condition_variable empty_;                   // Signaled on pending_.empty()
  bool exiting_ = false;
};


// Notification is an object that allows a user to to wait for another
// thread to signal a notification that an event has occurred.
//
// Multiple threads can wait on the same Notification object.
// but only one caller must call Notify() on the object.
class Notification {
 public:
  Notification() : notified_(false) {}
  ~Notification() {}

  void Notify() {
    std::unique_lock<std::mutex> l(mu_);
    eigen_assert(!notified_);
    notified_ = true;
    cv_.notify_all();
  }

  void WaitForNotification() {
    std::unique_lock<std::mutex> l(mu_);
    cv_.wait(l, [this]() { return notified_; } );
  }

 private:
  std::mutex mu_;
  std::condition_variable cv_;
  bool notified_;
};

// Runs an arbitrary function and then calls Notify() on the passed in
// Notification.
template <typename Function, typename... Args> struct FunctionWrapper
{
  static void run(Notification* n, Function f, Args... args) {
    f(args...);
    n->Notify();
  }
};

static EIGEN_STRONG_INLINE void wait_until_ready(Notification* n) {
  if (n) {
    n->WaitForNotification();
  }
}


// Build a thread pool device on top the an existing pool of threads.
struct ThreadPoolDevice {
  // The ownership of the thread pool remains with the caller.
  ThreadPoolDevice(ThreadPoolInterface* pool, size_t num_cores) : pool_(pool), num_threads_(num_cores) { }

  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }

  EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }

  EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
    ::memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }

  EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
    ::memset(buffer, c, n);
  }

  EIGEN_STRONG_INLINE size_t numThreads() const {
    return num_threads_;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
    // Should return an enum that encodes the ISA supported by the CPU
    return 1;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const {
    Notification* n = new Notification();
    std::function<void()> func =
      std::bind(&FunctionWrapper<Function, Args...>::run, n, f, args...);
    pool_->Schedule(func);
    return n;
  }
  template <class Function, class... Args>
  EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, Args&&... args) const {
    std::function<void()> func = std::bind(f, args...);
    pool_->Schedule(func);
  }

 private:
  ThreadPoolInterface* pool_;
  size_t num_threads_;
};

#endif


// GPU offloading
#ifdef EIGEN_USE_GPU

// This defines an interface that GPUDevice can take to use
// CUDA streams underneath.
class StreamInterface {
 public:
  virtual ~StreamInterface() {}

  virtual const cudaStream_t& stream() const = 0;
  virtual const cudaDeviceProp& deviceProperties() const = 0;

  // Allocate memory on the actual device where the computation will run
  virtual void* allocate(size_t num_bytes) const = 0;
  virtual void deallocate(void* buffer) const = 0;
};

#if defined(__CUDACC__)
static cudaDeviceProp* m_deviceProperties;
static bool m_devicePropInitialized = false;

static void initializeDeviceProp() {
  if (!m_devicePropInitialized) {
    if (!m_devicePropInitialized) {
      int num_devices;
      cudaError_t status = cudaGetDeviceCount(&num_devices);
      assert(status == cudaSuccess);
      m_deviceProperties = new cudaDeviceProp[num_devices];
      for (int i = 0; i < num_devices; ++i) {
        status = cudaGetDeviceProperties(&m_deviceProperties[i], i);
        assert(status == cudaSuccess);
      }
      m_devicePropInitialized = true;
    }
  }
}

static const cudaStream_t default_stream = cudaStreamDefault;

class CudaStreamDevice : public StreamInterface {
 public:
  // Use the default stream on the current device
  CudaStreamDevice() : stream_(&default_stream) {
    cudaGetDevice(&device_);
    initializeDeviceProp();
  }
  // Use the default stream on the specified device
  CudaStreamDevice(int device) : stream_(&default_stream), device_(device) {
    initializeDeviceProp();
  }
  // Use the specified stream. Note that it's the
  // caller responsibility to ensure that the stream can run on
  // the specified device. If no device is specified the code
  // assumes that the stream is associated to the current gpu device.
  CudaStreamDevice(const cudaStream_t* stream, int device = -1)
      : stream_(stream), device_(device) {
    if (device < 0) {
      cudaGetDevice(&device_);
    } else {
      int num_devices;
      cudaError_t err = cudaGetDeviceCount(&num_devices);
      assert(err == cudaSuccess);
      assert(device < num_devices);
      device_ = device;
    }
    initializeDeviceProp();
  }

  const cudaStream_t& stream() const { return *stream_; }
  const cudaDeviceProp& deviceProperties() const {
    return m_deviceProperties[device_];
  }
  virtual void* allocate(size_t num_bytes) const {
    cudaError_t err = cudaSetDevice(device_);
    assert(err == cudaSuccess);
    void* result;
    err = cudaMalloc(&result, num_bytes);
    assert(err == cudaSuccess);
    assert(result != NULL);
    return result;
  }
  virtual void deallocate(void* buffer) const {
    cudaError_t err = cudaSetDevice(device_);
    assert(err == cudaSuccess);
    assert(buffer != NULL);
    err = cudaFree(buffer);
    assert(err == cudaSuccess);
  }

 private:
  const cudaStream_t* stream_;
  int device_;
};
#endif  // __CUDACC__

struct GpuDevice {
  // The StreamInterface is not owned: the caller is
  // responsible for its initialization and eventual destruction.
  explicit GpuDevice(const StreamInterface* stream) : stream_(stream) {
    eigen_assert(stream);
  }

  // TODO(bsteiner): This is an internal API, we should not expose it.
  EIGEN_STRONG_INLINE const cudaStream_t& stream() const {
    return stream_->stream();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
#ifndef __CUDA_ARCH__
    return stream_->allocate(num_bytes);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
    return NULL;
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
#ifndef __CUDA_ARCH__
    stream_->deallocate(buffer);

#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice,
                                      stream_->stream());
    assert(err == cudaSuccess);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    cudaError_t err =
        cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream());
    assert(err == cudaSuccess);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    cudaError_t err =
        cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream());
    assert(err == cudaSuccess);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
#ifndef __CUDA_ARCH__
    cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream());
    assert(err == cudaSuccess);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const {
    // FIXME
    return 32;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
    // FIXME
    return 48*1024;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
    // We won't try to take advantage of the l2 cache for the time being, and
    // there is no l3 cache on cuda devices.
    return firstLevelCacheSize();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
#if defined(__CUDACC__) && !defined(__CUDA_ARCH__)
    cudaError_t err = cudaStreamSynchronize(stream_->stream());
    assert(err == cudaSuccess);
#else
    assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  inline int getNumCudaMultiProcessors() const {
    return stream_->deviceProperties().multiProcessorCount;
  }
  inline int maxCudaThreadsPerBlock() const {
    return stream_->deviceProperties().maxThreadsPerBlock;
  }
  inline int maxCudaThreadsPerMultiProcessor() const {
    return stream_->deviceProperties().maxThreadsPerMultiProcessor;
  }
  inline int sharedMemPerBlock() const {
    return stream_->deviceProperties().sharedMemPerBlock;
  }
  inline int majorDeviceVersion() const {
    return stream_->deviceProperties().major;
  }

  // This function checks if the CUDA runtime recorded an error for the
  // underlying stream device.
  inline bool ok() const {
#ifdef __CUDACC__
    cudaError_t error = cudaStreamQuery(stream_->stream());
    return (error == cudaSuccess) || (error == cudaErrorNotReady);
#else
    return false;
#endif
  }

 private:
  const StreamInterface* stream_;

};


#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...)            \
  (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__);  \
  assert(cudaGetLastError() == cudaSuccess);


// FIXME: Should be device and kernel specific.
#ifdef __CUDACC__
static inline void setCudaSharedMemConfig(cudaSharedMemConfig config) {
  cudaError_t status = cudaDeviceSetSharedMemConfig(config);
  assert(status == cudaSuccess);
}
#endif

#endif

}  // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H