aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h
blob: 1018395a16f83fe64cc8b482cb679563a1785428 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H


namespace Eigen {

// Default device for the machine (typically a single cpu core)
struct DefaultDevice {
  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }
  EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }
  EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
    ::memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
    ::memset(buffer, c, n);
  }

  EIGEN_STRONG_INLINE size_t numThreads() const {
    return 1;
  }
};


// Multiple cpu cores
// We should really use a thread pool here but first we need to find a portable thread pool library.
#ifdef EIGEN_USE_THREADS

// The implementation of the ThreadPool type ensures that the Schedule method
// runs the functions it is provided in FIFO order when the scheduling is done
// by a single thread.
class ThreadPool {
 public:
  // Construct a pool that contains "num_threads" threads.
  explicit ThreadPool(int num_threads) {
    for (int i = 0; i < num_threads; i++) {
      threads_.push_back(new std::thread([this]() { WorkerLoop(); }));
    }
  }

  // Wait until all scheduled work has finished and then destroy the
  // set of threads.
  ~ThreadPool()
  {
    {
      // Wait for all work to get done.
      std::unique_lock<std::mutex> l(mu_);
      empty_.wait(l, [this]() { return pending_.empty(); });
      exiting_ = true;

      // Wakeup all waiters.
      for (auto w : waiters_) {
        w->ready = true;
        w->work = nullptr;
        w->cv.notify_one();
      }
    }

    // Wait for threads to finish.
    for (auto t : threads_) {
      t->join();
      delete t;
    }
  }

  // Schedule fn() for execution in the pool of threads. The functions are
  // executed in the order in which they are scheduled.
  void Schedule(std::function<void()> fn) {
    std::unique_lock<std::mutex> l(mu_);
    if (waiters_.empty()) {
      pending_.push_back(fn);
    } else {
      Waiter* w = waiters_.back();
      waiters_.pop_back();
      w->ready = true;
      w->work = fn;
      w->cv.notify_one();
    }
  }

 protected:
  void WorkerLoop() {
    std::unique_lock<std::mutex> l(mu_);
    Waiter w;
    while (!exiting_) {
      std::function<void()> fn;
      if (pending_.empty()) {
        // Wait for work to be assigned to me
        w.ready = false;
        waiters_.push_back(&w);
        w.cv.wait(l, [&w]() { return w.ready; });
        fn = w.work;
        w.work = nullptr;
      } else {
        // Pick up pending work
        fn = pending_.front();
        pending_.pop_front();
        if (pending_.empty()) {
          empty_.notify_all();
        }
      }
      if (fn) {
        mu_.unlock();
        fn();
        mu_.lock();
      }
    }
  }

 private:
  struct Waiter {
    std::condition_variable cv;
    std::function<void()> work;
    bool ready;
  };

  std::mutex mu_;
  std::vector<std::thread*> threads_;               // All threads
  std::vector<Waiter*> waiters_;                    // Stack of waiting threads.
  std::deque<std::function<void()>> pending_;       // Queue of pending work
  std::condition_variable empty_;                   // Signaled on pending_.empty()
  bool exiting_ = false;
};


// Notification is an object that allows a user to to wait for another
// thread to signal a notification that an event has occurred.
//
// Multiple threads can wait on the same Notification object.
// but only one caller must call Notify() on the object.
class Notification {
 public:
  Notification() : notified_(false) {}
  ~Notification() {}

  void Notify() {
    std::unique_lock<std::mutex> l(mu_);
    eigen_assert(!notified_);
    notified_ = true;
    cv_.notify_all();
  }

  void WaitForNotification() {
    std::unique_lock<std::mutex> l(mu_);
    cv_.wait(l, [this]() { return notified_; } );
  }

 private:
  std::mutex mu_;
  std::condition_variable cv_;
  bool notified_;
};

// Runs an arbitrary function and then calls Notify() on the passed in
// Notification.
template <typename Function, typename... Args> struct FunctionWrapper
{
  static void run(Notification* n, Function f, Args... args) {
    f(args...);
    n->Notify();
  }
};

static EIGEN_STRONG_INLINE void wait_until_ready(Notification* n) {
  if (n) {
    n->WaitForNotification();
  }
}


// Build a thread pool device on top the an existing pool of threads.
struct ThreadPoolDevice {
  ThreadPoolDevice(ThreadPool* pool, size_t num_cores) : pool_(pool), num_threads_(num_cores) { }

  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }

  EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }

  EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
    ::memcpy(dst, src, n);
  }

  EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
    ::memset(buffer, c, n);
  }

  EIGEN_STRONG_INLINE size_t numThreads() const {
    return num_threads_;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const {
    Notification* n = new Notification();
    std::function<void()> func =
      std::bind(&FunctionWrapper<Function, Args...>::run, n, f, args...);
    pool_->Schedule(func);
    return n;
  }
  template <class Function, class... Args>
  EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, Args&&... args) const {
    std::function<void()> func = std::bind(f, args...);
    pool_->Schedule(func);
  }

 private:
  ThreadPool* pool_;
  size_t num_threads_;
};

#endif


// GPU offloading
#ifdef EIGEN_USE_GPU
static cudaDeviceProp m_deviceProperties;
static bool m_devicePropInitialized = false;

static void initializeDeviceProp() {
  if (!m_devicePropInitialized) {
    assert(cudaGetDeviceProperties(&m_deviceProperties, 0) == cudaSuccess);
    m_devicePropInitialized = true;
  }
}

static inline int getNumCudaMultiProcessors() {
  initializeDeviceProp();
  return m_deviceProperties.multiProcessorCount;
}
static inline int maxCudaThreadsPerBlock() {
  initializeDeviceProp();
  return m_deviceProperties.maxThreadsPerBlock;
}
static inline int maxCudaThreadsPerMultiProcessor() {
  initializeDeviceProp();
  return m_deviceProperties.maxThreadsPerMultiProcessor;
}
static inline int sharedMemPerBlock() {
  initializeDeviceProp();
  return m_deviceProperties.sharedMemPerBlock;
}

static inline void setCudaSharedMemConfig(cudaSharedMemConfig config) {
  cudaError_t status = cudaDeviceSetSharedMemConfig(config);
  assert(status == cudaSuccess);
}

struct GpuDevice {
  // The cudastream is not owned: the caller is responsible for its initialization and eventual destruction.
  GpuDevice(const cudaStream_t* stream) : stream_(stream) { eigen_assert(stream); }

  EIGEN_STRONG_INLINE const cudaStream_t& stream() const { return *stream_; }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
#ifndef __CUDA_ARCH__
    void* result;
    assert(cudaMalloc(&result, num_bytes) == cudaSuccess);
    assert(result != NULL);
    return result;
#else
    assert(false && "The default device should be used instead to generate kernel code");
    return NULL;
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
#ifndef __CUDA_ARCH__
    assert(buffer != NULL);
    assert(cudaFree(buffer) == cudaSuccess);
#else
    assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    assert(cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice, *stream_) == cudaSuccess);
#else
    assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
#ifndef __CUDA_ARCH__
    assert(cudaMemsetAsync(buffer, c, n, *stream_) == cudaSuccess);
#else
    assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const {
    // FIXME
    return 32;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
    cudaStreamSynchronize(*stream_);
  }

 private:
  // TODO: multigpu.
  const cudaStream_t* stream_;
};

#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...)            \
  (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__);  \
  assert(cudaGetLastError() == cudaSuccess);

#endif

}  // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H