aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
blob: cd3dd214b34d4209b863836ed09121949c3e4c23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#if defined(EIGEN_USE_THREADS) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H

namespace Eigen {

// This defines an interface that ThreadPoolDevice can take to use
// custom thread pools underneath.
class ThreadPoolInterface {
 public:
  virtual void Schedule(std::function<void()> fn) = 0;

  virtual ~ThreadPoolInterface() {}
};

// The implementation of the ThreadPool type ensures that the Schedule method
// runs the functions it is provided in FIFO order when the scheduling is done
// by a single thread.
// Environment provides a way to create threads and also allows to intercept
// task submission and execution.
template <typename Environment>
class ThreadPoolTempl : public ThreadPoolInterface {
 public:
  // Construct a pool that contains "num_threads" threads.
  explicit ThreadPoolTempl(int num_threads, Environment env = Environment())
      : env_(env), threads_(num_threads), waiters_(num_threads) {
    for (int i = 0; i < num_threads; i++) {
      threads_.push_back(env.CreateThread([this]() { WorkerLoop(); }));
    }
  }

  // Wait until all scheduled work has finished and then destroy the
  // set of threads.
  ~ThreadPoolTempl() {
    {
      // Wait for all work to get done.
      std::unique_lock<std::mutex> l(mu_);
      while (!pending_.empty()) {
        empty_.wait(l);
      }
      exiting_ = true;

      // Wakeup all waiters.
      for (auto w : waiters_) {
        w->ready = true;
        w->task.f = nullptr;
        w->cv.notify_one();
      }
    }

    // Wait for threads to finish.
    for (auto t : threads_) {
      delete t;
    }
  }

  // Schedule fn() for execution in the pool of threads. The functions are
  // executed in the order in which they are scheduled.
  void Schedule(std::function<void()> fn) {
    Task t = env_.CreateTask(std::move(fn));
    std::unique_lock<std::mutex> l(mu_);
    if (waiters_.empty()) {
      pending_.push_back(std::move(t));
    } else {
      Waiter* w = waiters_.back();
      waiters_.pop_back();
      w->ready = true;
      w->task = std::move(t);
      w->cv.notify_one();
    }
  }

 protected:
  void WorkerLoop() {
    std::unique_lock<std::mutex> l(mu_);
    Waiter w;
    Task t;
    while (!exiting_) {
      if (pending_.empty()) {
        // Wait for work to be assigned to me
        w.ready = false;
        waiters_.push_back(&w);
        while (!w.ready) {
          w.cv.wait(l);
        }
        t = w.task;
        w.task.f = nullptr;
      } else {
        // Pick up pending work
        t = std::move(pending_.front());
        pending_.pop_front();
        if (pending_.empty()) {
          empty_.notify_all();
        }
      }
      if (t.f) {
        mu_.unlock();
        env_.ExecuteTask(t);
        t.f = nullptr;
        mu_.lock();
      }
    }
  }

 private:
  typedef typename Environment::Task Task;
  typedef typename Environment::EnvThread Thread;

  struct Waiter {
    std::condition_variable cv;
    Task task;
    bool ready;
  };

  Environment env_;
  std::mutex mu_;
  MaxSizeVector<Thread*> threads_;  // All threads
  MaxSizeVector<Waiter*> waiters_;  // Stack of waiting threads.
  std::deque<Task> pending_;          // Queue of pending work
  std::condition_variable empty_;          // Signaled on pending_.empty()
  bool exiting_ = false;
};

struct StlThreadEnvironment {
  struct Task {
    std::function<void()> f;
  };

  // EnvThread constructor must start the thread,
  // destructor must join the thread.
  class EnvThread {
   public:
    EnvThread(std::function<void()> f) : thr_(f) {}
    ~EnvThread() { thr_.join(); }

   private:
    std::thread thr_;
  };

  EnvThread* CreateThread(std::function<void()> f) { return new EnvThread(f); }
  Task CreateTask(std::function<void()> f) { return Task{std::move(f)}; }
  void ExecuteTask(const Task& t) { t.f(); }
};

typedef ThreadPoolTempl<StlThreadEnvironment> ThreadPool;


// Barrier is an object that allows one or more threads to wait until
// Notify has been called a specified number of times.
class Barrier {
 public:
  Barrier(unsigned int count) : state_(count << 1), notified_(false) {
    eigen_assert(((count << 1) >> 1) == count);
  }
  ~Barrier() {
    eigen_assert((state_>>1) == 0);
  }

  void Notify() {
    unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2;
    if (v != 1) {
      eigen_assert(((v + 2) & ~1) != 0);
      return;  // either count has not dropped to 0, or waiter is not waiting
    }
    std::unique_lock<std::mutex> l(mu_);
    eigen_assert(!notified_);
    notified_ = true;
    cv_.notify_all();
  }

  void Wait() {
    unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel);
    if ((v >> 1) == 0) return;
    std::unique_lock<std::mutex> l(mu_);
    while (!notified_) {
      cv_.wait(l);
    }
  }

 private:
  std::mutex mu_;
  std::condition_variable cv_;
  std::atomic<unsigned int> state_;  // low bit is waiter flag
  bool notified_;
};


// Notification is an object that allows a user to to wait for another
// thread to signal a notification that an event has occurred.
//
// Multiple threads can wait on the same Notification object,
// but only one caller must call Notify() on the object.
struct Notification : Barrier {
  Notification() : Barrier(1) {};
};


// Runs an arbitrary function and then calls Notify() on the passed in
// Notification.
template <typename Function, typename... Args> struct FunctionWrapperWithNotification
{
  static void run(Notification* n, Function f, Args... args) {
    f(args...);
    if (n) {
      n->Notify();
    }
  }
};

template <typename Function, typename... Args> struct FunctionWrapperWithBarrier
{
  static void run(Barrier* b, Function f, Args... args) {
    f(args...);
    if (b) {
      b->Notify();
    }
  }
};

template <typename SyncType>
static EIGEN_STRONG_INLINE void wait_until_ready(SyncType* n) {
  if (n) {
    n->Wait();
  }
}


// Build a thread pool device on top the an existing pool of threads.
struct ThreadPoolDevice {
  // The ownership of the thread pool remains with the caller.
  ThreadPoolDevice(ThreadPoolInterface* pool, size_t num_cores) : pool_(pool), num_threads_(num_cores) { }

  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }

  EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }

  EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
    ::memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }

  EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
    ::memset(buffer, c, n);
  }

  EIGEN_STRONG_INLINE size_t numThreads() const {
    return num_threads_;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
    // Should return an enum that encodes the ISA supported by the CPU
    return 1;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const {
    Notification* n = new Notification();
    std::function<void()> func =
      std::bind(&FunctionWrapperWithNotification<Function, Args...>::run, n, f, args...);
    pool_->Schedule(func);
    return n;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE void enqueue_with_barrier(Barrier* b,
                                                Function&& f,
                                                Args&&... args) const {
    std::function<void()> func = std::bind(
        &FunctionWrapperWithBarrier<Function, Args...>::run, b, f, args...);
    pool_->Schedule(func);
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, Args&&... args) const {
    std::function<void()> func = std::bind(f, args...);
    pool_->Schedule(func);
  }

 private:
  ThreadPoolInterface* pool_;
  size_t num_threads_;
};


}  // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H