aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
blob: 069680a117e942cb10bd440a49455267cccff467 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#if defined(EIGEN_USE_THREADS) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H

namespace Eigen {

// Use the SimpleThreadPool by default. We'll switch to the new non blocking
// thread pool later.
#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
template <typename Env> using ThreadPoolTempl = NonBlockingThreadPoolTempl<Env>;
typedef NonBlockingThreadPool ThreadPool;
#else
template <typename Env> using ThreadPoolTempl = SimpleThreadPoolTempl<Env>;
typedef SimpleThreadPool ThreadPool;
#endif


// Barrier is an object that allows one or more threads to wait until
// Notify has been called a specified number of times.
class Barrier {
 public:
  Barrier(unsigned int count) : state_(count << 1), notified_(false) {
    eigen_assert(((count << 1) >> 1) == count);
  }
  ~Barrier() {
    eigen_assert((state_>>1) == 0);
  }

  void Notify() {
    unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2;
    if (v != 1) {
      eigen_assert(((v + 2) & ~1) != 0);
      return;  // either count has not dropped to 0, or waiter is not waiting
    }
    std::unique_lock<std::mutex> l(mu_);
    eigen_assert(!notified_);
    notified_ = true;
    cv_.notify_all();
  }

  void Wait() {
    unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel);
    if ((v >> 1) == 0) return;
    std::unique_lock<std::mutex> l(mu_);
    while (!notified_) {
      cv_.wait(l);
    }
  }

 private:
  std::mutex mu_;
  std::condition_variable cv_;
  std::atomic<unsigned int> state_;  // low bit is waiter flag
  bool notified_;
};


// Notification is an object that allows a user to to wait for another
// thread to signal a notification that an event has occurred.
//
// Multiple threads can wait on the same Notification object,
// but only one caller must call Notify() on the object.
struct Notification : Barrier {
  Notification() : Barrier(1) {};
};


// Runs an arbitrary function and then calls Notify() on the passed in
// Notification.
template <typename Function, typename... Args> struct FunctionWrapperWithNotification
{
  static void run(Notification* n, Function f, Args... args) {
    f(args...);
    if (n) {
      n->Notify();
    }
  }
};

template <typename Function, typename... Args> struct FunctionWrapperWithBarrier
{
  static void run(Barrier* b, Function f, Args... args) {
    f(args...);
    if (b) {
      b->Notify();
    }
  }
};

template <typename SyncType>
static EIGEN_STRONG_INLINE void wait_until_ready(SyncType* n) {
  if (n) {
    n->Wait();
  }
}


// Build a thread pool device on top the an existing pool of threads.
struct ThreadPoolDevice {
  // The ownership of the thread pool remains with the caller.
  ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores) : pool_(pool), num_threads_(num_cores) { }

  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }

  EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }

  EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
    ::memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }

  EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
    ::memset(buffer, c, n);
  }

  EIGEN_STRONG_INLINE int numThreads() const {
    return num_threads_;
  }

  EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
    return l1CacheSize();
  }

  EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
    // The l3 cache size is shared between all the cores.
    return l3CacheSize() / num_threads_;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
    // Should return an enum that encodes the ISA supported by the CPU
    return 1;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const {
    Notification* n = new Notification();
    pool_->Schedule(std::bind(&FunctionWrapperWithNotification<Function, Args...>::run, n, f, args...));
    return n;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE void enqueue_with_barrier(Barrier* b,
                                                Function&& f,
                                                Args&&... args) const {
    pool_->Schedule(std::bind(
        &FunctionWrapperWithBarrier<Function, Args...>::run, b, f, args...));
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, Args&&... args) const {
    pool_->Schedule(std::bind(f, args...));
  }

  // Returns a logical thread index between 0 and pool_->NumThreads() - 1 if
  // called from one of the threads in pool_. Returns -1 otherwise.
  EIGEN_STRONG_INLINE int currentThreadId() const {
    return pool_->CurrentThreadId();
  }

  // parallelFor executes f with [0, n) arguments in parallel and waits for
  // completion. F accepts a half-open interval [first, last).
  // Block size is choosen based on the iteration cost and resulting parallel
  // efficiency. If block_align is not nullptr, it is called to round up the
  // block size.
  void parallelFor(Index n, const TensorOpCost& cost,
                   std::function<Index(Index)> block_align,
                   std::function<void(Index, Index)> f) const {
    typedef TensorCostModel<ThreadPoolDevice> CostModel;
    if (n <= 1 || numThreads() == 1 ||
        CostModel::numThreads(n, cost, static_cast<int>(numThreads())) == 1) {
      f(0, n);
      return;
    }

    // Calculate block size based on (1) the iteration cost and (2) parallel
    // efficiency. We want blocks to be not too small to mitigate
    // parallelization overheads; not too large to mitigate tail
    // effect and potential load imbalance and we also want number
    // of blocks to be evenly dividable across threads.

    double block_size_f = 1.0 / CostModel::taskSize(1, cost);
    Index block_size = numext::mini(n, numext::maxi<Index>(1, block_size_f));
    const Index max_block_size =
        numext::mini(n, numext::maxi<Index>(1, 2 * block_size_f));
    if (block_align) {
      Index new_block_size = block_align(block_size);
      eigen_assert(new_block_size >= block_size);
      block_size = numext::mini(n, new_block_size);
    }
    Index block_count = divup(n, block_size);
    // Calculate parallel efficiency as fraction of total CPU time used for
    // computations:
    double max_efficiency =
        static_cast<double>(block_count) /
        (divup<int>(block_count, numThreads()) * numThreads());
    // Now try to increase block size up to max_block_size as long as it
    // doesn't decrease parallel efficiency.
    for (Index prev_block_count = block_count; prev_block_count > 1;) {
      // This is the next block size that divides size into a smaller number
      // of blocks than the current block_size.
      Index coarser_block_size = divup(n, prev_block_count - 1);
      if (block_align) {
        Index new_block_size = block_align(coarser_block_size);
        eigen_assert(new_block_size >= coarser_block_size);
        coarser_block_size = numext::mini(n, new_block_size);
      }
      if (coarser_block_size > max_block_size) {
        break;  // Reached max block size. Stop.
      }
      // Recalculate parallel efficiency.
      const Index coarser_block_count = divup(n, coarser_block_size);
      eigen_assert(coarser_block_count < prev_block_count);
      prev_block_count = coarser_block_count;
      const double coarser_efficiency =
          static_cast<double>(coarser_block_count) /
          (divup<int>(coarser_block_count, numThreads()) * numThreads());
      if (coarser_efficiency + 0.01 >= max_efficiency) {
        // Taking it.
        block_size = coarser_block_size;
        block_count = coarser_block_count;
        if (max_efficiency < coarser_efficiency) {
          max_efficiency = coarser_efficiency;
        }
      }
    }

    // Recursively divide size into halves until we reach block_size.
    // Division code rounds mid to block_size, so we are guaranteed to get
    // block_count leaves that do actual computations.
    Barrier barrier(static_cast<unsigned int>(block_count));
    std::function<void(Index, Index)> handleRange;
    handleRange = [=, &handleRange, &barrier, &f](Index first, Index last) {
      if (last - first <= block_size) {
        // Single block or less, execute directly.
        f(first, last);
        barrier.Notify();
        return;
      }
      // Split into halves and submit to the pool.
      Index mid = first + divup((last - first) / 2, block_size) * block_size;
      pool_->Schedule([=, &handleRange]() { handleRange(mid, last); });
      pool_->Schedule([=, &handleRange]() { handleRange(first, mid); });
    };
    handleRange(0, n);
    barrier.Wait();
  }

  // Convenience wrapper for parallelFor that does not align blocks.
  void parallelFor(Index n, const TensorOpCost& cost,
                   std::function<void(Index, Index)> f) const {
    parallelFor(n, cost, nullptr, std::move(f));
  }

 private:
  ThreadPoolInterface* pool_;
  int num_threads_;
};


}  // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H