aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
blob: dcbef5b03a7835d34961af0b5eea5474fb44d364 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#if defined(EIGEN_USE_THREADS) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H

namespace Eigen {

// This defines an interface that ThreadPoolDevice can take to use
// custom thread pools underneath.
class ThreadPoolInterface {
 public:
  virtual void Schedule(std::function<void()> fn) = 0;

  virtual ~ThreadPoolInterface() {}
};

// The implementation of the ThreadPool type ensures that the Schedule method
// runs the functions it is provided in FIFO order when the scheduling is done
// by a single thread.
class ThreadPool : public ThreadPoolInterface {
 public:
  // Construct a pool that contains "num_threads" threads.
  explicit ThreadPool(int num_threads) {
    for (int i = 0; i < num_threads; i++) {
      threads_.push_back(new std::thread([this]() { WorkerLoop(); }));
    }
  }

  // Wait until all scheduled work has finished and then destroy the
  // set of threads.
  ~ThreadPool()
  {
    {
      // Wait for all work to get done.
      std::unique_lock<std::mutex> l(mu_);
      empty_.wait(l, [this]() { return pending_.empty(); });
      exiting_ = true;

      // Wakeup all waiters.
      for (auto w : waiters_) {
        w->ready = true;
        w->work = nullptr;
        w->cv.notify_one();
      }
    }

    // Wait for threads to finish.
    for (auto t : threads_) {
      t->join();
      delete t;
    }
  }

  // Schedule fn() for execution in the pool of threads. The functions are
  // executed in the order in which they are scheduled.
  void Schedule(std::function<void()> fn) {
    std::unique_lock<std::mutex> l(mu_);
    if (waiters_.empty()) {
      pending_.push_back(fn);
    } else {
      Waiter* w = waiters_.back();
      waiters_.pop_back();
      w->ready = true;
      w->work = fn;
      w->cv.notify_one();
    }
  }

 protected:
  void WorkerLoop() {
    std::unique_lock<std::mutex> l(mu_);
    Waiter w;
    while (!exiting_) {
      std::function<void()> fn;
      if (pending_.empty()) {
        // Wait for work to be assigned to me
        w.ready = false;
        waiters_.push_back(&w);
        w.cv.wait(l, [&w]() { return w.ready; });
        fn = w.work;
        w.work = nullptr;
      } else {
        // Pick up pending work
        fn = pending_.front();
        pending_.pop_front();
        if (pending_.empty()) {
          empty_.notify_all();
        }
      }
      if (fn) {
        mu_.unlock();
        fn();
        mu_.lock();
      }
    }
  }

 private:
  struct Waiter {
    std::condition_variable cv;
    std::function<void()> work;
    bool ready;
  };

  std::mutex mu_;
  std::vector<std::thread*> threads_;               // All threads
  std::vector<Waiter*> waiters_;                    // Stack of waiting threads.
  std::deque<std::function<void()>> pending_;       // Queue of pending work
  std::condition_variable empty_;                   // Signaled on pending_.empty()
  bool exiting_ = false;
};


// Notification is an object that allows a user to to wait for another
// thread to signal a notification that an event has occurred.
//
// Multiple threads can wait on the same Notification object.
// but only one caller must call Notify() on the object.
class Notification {
 public:
  Notification() : notified_(false) {}
  ~Notification() {}

  void Notify() {
    std::unique_lock<std::mutex> l(mu_);
    eigen_assert(!notified_);
    notified_ = true;
    cv_.notify_all();
  }

  void WaitForNotification() {
    std::unique_lock<std::mutex> l(mu_);
    cv_.wait(l, [this]() { return notified_; } );
  }

 private:
  std::mutex mu_;
  std::condition_variable cv_;
  bool notified_;
};

// Runs an arbitrary function and then calls Notify() on the passed in
// Notification.
template <typename Function, typename... Args> struct FunctionWrapper
{
  static void run(Notification* n, Function f, Args... args) {
    f(args...);
    n->Notify();
  }
};

static EIGEN_STRONG_INLINE void wait_until_ready(Notification* n) {
  if (n) {
    n->WaitForNotification();
  }
}


// Build a thread pool device on top the an existing pool of threads.
struct ThreadPoolDevice {
  // The ownership of the thread pool remains with the caller.
  ThreadPoolDevice(ThreadPoolInterface* pool, size_t num_cores) : pool_(pool), num_threads_(num_cores) { }

  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }

  EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }

  EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
    ::memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }
  EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }

  EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
    ::memset(buffer, c, n);
  }

  EIGEN_STRONG_INLINE size_t numThreads() const {
    return num_threads_;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
    // Should return an enum that encodes the ISA supported by the CPU
    return 1;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const {
    Notification* n = new Notification();
    std::function<void()> func =
      std::bind(&FunctionWrapper<Function, Args...>::run, n, f, args...);
    pool_->Schedule(func);
    return n;
  }
  template <class Function, class... Args>
  EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, Args&&... args) const {
    std::function<void()> func = std::bind(f, args...);
    pool_->Schedule(func);
  }

 private:
  ThreadPoolInterface* pool_;
  size_t num_threads_;
};


}  // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H