aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h
blob: 258218463fa558a19223ac7104c2733b6d51ba95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli    Codeplay Software Ltd.
// Ralph Potter  Codeplay Software Ltd.
// Luke Iwanski  Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>

//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H

namespace Eigen {

  #define ConvertToActualTypeSycl(Scalar, buf_acc) reinterpret_cast<typename cl::sycl::global_ptr<Scalar>::pointer_t>((&(*buf_acc.get_pointer())))
  #define ConvertToActualSyclOffset(Scalar, offset) offset/sizeof(Scalar)


  template <typename Scalar, typename read_accessor, typename write_accessor> class MemCopyFunctor {
  public:
    MemCopyFunctor(read_accessor src_acc, write_accessor dst_acc, size_t rng, size_t i, size_t offset) : m_src_acc(src_acc), m_dst_acc(dst_acc), m_rng(rng), m_i(i), m_offset(offset) {}

    void operator()(cl::sycl::nd_item<1> itemID) {
      auto src_ptr = ConvertToActualTypeSycl(Scalar, m_src_acc);
      auto dst_ptr = ConvertToActualTypeSycl(Scalar, m_dst_acc);
      auto globalid = itemID.get_global_linear_id();
      if (globalid < m_rng) {
        dst_ptr[globalid + m_i] = src_ptr[globalid + m_offset];
      }
    }

  private:
    read_accessor m_src_acc;
    write_accessor m_dst_acc;
    size_t m_rng;
    size_t m_i;
    size_t m_offset;
  };
template<typename AccType>
  struct memsetkernelFunctor{
   AccType m_acc;
   const ptrdiff_t buff_offset;
   const size_t m_rng, m_c;
   memsetkernelFunctor(AccType acc, const ptrdiff_t buff_offset_, const size_t rng, const size_t c):m_acc(acc),  buff_offset(buff_offset_), m_rng(rng), m_c(c){}
   void operator()(cl::sycl::nd_item<1> itemID) {
     auto globalid=itemID.get_global_linear_id();
     if (globalid< m_rng) m_acc[globalid + buff_offset] = m_c;
   }

  };

  //get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU  and intel GPU)
EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){
  auto devices = cl::sycl::device::get_devices();
  std::vector<cl::sycl::device>::iterator it =devices.begin();
  while(it!=devices.end()) {
    ///FIXME: Currently there is a bug in amd cpu OpenCL
    auto s=  (*it).template get_info<cl::sycl::info::device::vendor>();
    std::transform(s.begin(), s.end(), s.begin(), ::tolower);
    if((*it).is_cpu() && s.find("amd")!=std::string::npos && s.find("apu") == std::string::npos){ // remove amd cpu as it is not supported by computecpp allow APUs
      it=devices.erase(it);
      //FIXME: currently there is a bug in intel gpu driver regarding memory allignment issue.
    }else if((*it).is_gpu() && s.find("intel")!=std::string::npos){
      it=devices.erase(it);
    }
    else{
      ++it;
    }
  }
  return devices;
}

struct QueueInterface {
  /// class members:
  bool exception_caught_ = false;

  mutable std::mutex mutex_;

  /// std::map is the container used to make sure that we create only one buffer
  /// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
  /// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
  mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
  /// sycl queue
  mutable cl::sycl::queue m_queue;
  /// creating device by using cl::sycl::selector or cl::sycl::device both are the same and can be captured through dev_Selector typename
  /// SyclStreamDevice is not owned. it is the caller's responsibility to destroy it.
  template<typename dev_Selector> explicit QueueInterface(const dev_Selector& s):
#ifdef EIGEN_EXCEPTIONS
  m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
    for (const auto& e : l) {
      try {
        if (e) {
           exception_caught_ = true;
           std::rethrow_exception(e);
        }
      } catch (cl::sycl::exception e) {
        std::cerr << e.what() << std::endl;
      }
    }
  }))
#else
m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
  for (const auto& e : l) {
      if (e) {
         exception_caught_ = true;
         std::cerr << "Error detected Inside Sycl Device."<< std::endl;

      }
  }
}))
#endif
  {}
//FIXME: currently we have to switch back to write as discard_write doesnot work in forloop
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
      std::lock_guard<std::mutex> lock(mutex_);
      auto host_acc= find_buffer(dst)->second. template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::host_buffer>();
      ::memcpy(host_acc.get_pointer(), src, n);
}

template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
  std::lock_guard<std::mutex> lock(mutex_);
  // Assuming that the dst is the start of the destination pointer
auto it =find_buffer(src);
auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
offset/=sizeof(Index);
size_t rng, GRange, tileSize;
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
  auto dest_buf = cl::sycl::buffer<uint8_t, 1, cl::sycl::map_allocator<uint8_t> >(static_cast<uint8_t*>(dst), cl::sycl::range<1>(n));
  m_queue.submit([&](cl::sycl::handler &cgh) {
    auto src_acc= it->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
    auto dst_acc =dest_buf.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
    typedef decltype(src_acc) read_accessor;
    typedef decltype(dst_acc) write_accessor;
    cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, 0, offset));
  });
  synchronize();

}

EIGEN_STRONG_INLINE void synchronize() const {
  std::lock_guard<std::mutex> lock(mutex_);
  m_queue.wait_and_throw(); //pass
}
EIGEN_STRONG_INLINE void asynchronousExec() const {
  ///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
  //sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled
  std::lock_guard<std::mutex> lock(mutex_);
  m_queue.wait_and_throw(); //pass

}

template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange)  const {
  tileSize =static_cast<Index>(m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>());
  auto s=  m_queue.get_device().template get_info<cl::sycl::info::device::vendor>();
  std::transform(s.begin(), s.end(), s.begin(), ::tolower);
  if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
    tileSize=std::min(static_cast<Index>(256), static_cast<Index>(tileSize));
  }
  rng = n;
  if (rng==0) rng=static_cast<Index>(1);
  GRange=rng;
  if (tileSize>GRange) tileSize=GRange;
  else if(GRange>tileSize){
    Index xMode =  static_cast<Index>(GRange % tileSize);
    if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode);
  }
}

/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileSize0, Index &tileSize1, Index &rng0, Index &rng1, Index &GRange0, Index &GRange1)  const {
  Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
  if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
    max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size));
  }
  Index pow_of_2 = static_cast<Index>(std::log2(max_workgroup_Size));
  tileSize1 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/2)));
  rng1=dim1;
  if (rng1==0 ) rng1=static_cast<Index>(1);
  GRange1=rng1;
  if (tileSize1>GRange1) tileSize1=GRange1;
  else if(GRange1>tileSize1){
    Index xMode =  static_cast<Index>(GRange1 % tileSize1);
    if (xMode != 0) GRange1 += static_cast<Index>(tileSize1 - xMode);
  }
  tileSize0 = static_cast<Index>(max_workgroup_Size/tileSize1);
  rng0 = dim0;
  if (rng0==0 ) rng0=static_cast<Index>(1);
  GRange0=rng0;
  if (tileSize0>GRange0) tileSize0=GRange0;
  else if(GRange0>tileSize0){
    Index xMode =  static_cast<Index>(GRange0 % tileSize0);
    if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
  }
}



/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2)  const {
  Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
  if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
    max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size));
  }
  Index pow_of_2 = static_cast<Index>(std::log2(max_workgroup_Size));
  tileSize2 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/3)));
  rng2=dim2;
  if (rng2==0 ) rng1=static_cast<Index>(1);
  GRange2=rng2;
  if (tileSize2>GRange2) tileSize2=GRange2;
  else if(GRange2>tileSize2){
    Index xMode =  static_cast<Index>(GRange2 % tileSize2);
    if (xMode != 0) GRange2 += static_cast<Index>(tileSize2 - xMode);
  }
  pow_of_2 = static_cast<Index>(std::log2(static_cast<Index>(max_workgroup_Size/tileSize2)));
  tileSize1 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/2)));
  rng1=dim1;
  if (rng1==0 ) rng1=static_cast<Index>(1);
  GRange1=rng1;
  if (tileSize1>GRange1) tileSize1=GRange1;
  else if(GRange1>tileSize1){
    Index xMode =  static_cast<Index>(GRange1 % tileSize1);
    if (xMode != 0) GRange1 += static_cast<Index>(tileSize1 - xMode);
  }
  tileSize0 = static_cast<Index>(max_workgroup_Size/(tileSize1*tileSize2));
  rng0 = dim0;
  if (rng0==0 ) rng0=static_cast<Index>(1);
  GRange0=rng0;
  if (tileSize0>GRange0) tileSize0=GRange0;
  else if(GRange0>tileSize0){
    Index xMode =  static_cast<Index>(GRange0 % tileSize0);
    if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
  }
}


EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
  std::lock_guard<std::mutex> lock(mutex_);
  return m_queue.get_device(). template get_info<cl::sycl::info::device::max_compute_units>();
//  return stream_->deviceProperties().multiProcessorCount;
}
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
  std::lock_guard<std::mutex> lock(mutex_);
  return m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();

//  return stream_->deviceProperties().maxThreadsPerBlock;
}
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
  std::lock_guard<std::mutex> lock(mutex_);
  // OpenCL doesnot have such concept
  return 2;//sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
//  return stream_->deviceProperties().maxThreadsPerMultiProcessor;
}
EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
  std::lock_guard<std::mutex> lock(mutex_);
  return m_queue.get_device(). template get_info<cl::sycl::info::device::local_mem_size>();
//  return stream_->deviceProperties().sharedMemPerBlock;
}

  /// Allocating device pointer. This pointer is actually an 8 bytes host pointer used as key to access the sycl device buffer.
  /// The reason is that we cannot use device buffer as a pointer as a m_data in Eigen leafNode expressions. So we create a key
  /// pointer to be used in Eigen expression construction. When we convert the Eigen construction into the sycl construction we
  /// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
  /// The device pointer would be deleted by calling deallocate function.
  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    std::lock_guard<std::mutex> lock(mutex_);
    auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
    auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
    buf.set_final_data(nullptr);
    buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(static_cast<const uint8_t*>(ptr),buf));
    return static_cast<void*>(ptr);
  }

  /// This is used to deallocate the device pointer. p is used as a key inside
  /// the map to find the device buffer and delete it.
  EIGEN_STRONG_INLINE void deallocate(void *p) const {
    std::lock_guard<std::mutex> lock(mutex_);
    auto it = buffer_map.find(static_cast<const uint8_t*>(p));
    if (it != buffer_map.end()) {
      buffer_map.erase(it);
    }
  }

  EIGEN_STRONG_INLINE void deallocate_all() const {
    std::lock_guard<std::mutex> lock(mutex_);
    buffer_map.clear();
  }

  EIGEN_STRONG_INLINE std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator find_buffer(const void* ptr) const {
    std::lock_guard<std::mutex> lock(mutex_);
    auto it1 = buffer_map.find(static_cast<const uint8_t*>(ptr));
    if (it1 != buffer_map.end()){
      return it1;
    }
    else{
      for(std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator it=buffer_map.begin(); it!=buffer_map.end(); ++it){
        auto size = it->second.get_size();
        if((it->first <  (static_cast<const uint8_t*>(ptr))) && ((static_cast<const uint8_t*>(ptr)) < (it->first + size)) ) return it;
      }
    }
    std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling malloc-ed function."<< std::endl;
    abort();
  }

  // This function checks if the runtime recorded an error for the
  // underlying stream device.
  EIGEN_STRONG_INLINE bool ok() const {
    if (!exception_caught_) {
      m_queue.wait_and_throw();
    }
    return !exception_caught_;
  }

  // destructor
  ~QueueInterface() { buffer_map.clear(); }
};

struct SyclDevice {
  // class member.
  QueueInterface* m_queue_stream;
  /// QueueInterface is not owned. it is the caller's responsibility to destroy it.
  explicit SyclDevice(QueueInterface* queue_stream) : m_queue_stream(queue_stream){}

  /// Creation of sycl accessor for a buffer. This function first tries to find
  /// the buffer in the buffer_map. If found it gets the accessor from it, if not,
  /// the function then adds an entry by creating a sycl buffer for that particular pointer.
  template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer>
  get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const {
    return (get_sycl_buffer(ptr).template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
  }

  /// Accessing the created sycl device buffer for the device pointer
  EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
    return m_queue_stream->find_buffer(ptr)->second;
  }

  /// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
  template<typename Index>
  EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange)  const {
  m_queue_stream->parallel_for_setup(n, tileSize, rng, GRange);
  }

  /// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
  template<typename Index>
  EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileSize0, Index &tileSize1, Index &rng0, Index &rng1, Index &GRange0, Index &GRange1)  const {
    m_queue_stream->parallel_for_setup(dim0, dim1, tileSize0, tileSize1, rng0, rng1, GRange0, GRange1);
  }



  /// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
  template<typename Index>
  EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2)  const {
    m_queue_stream->parallel_for_setup(dim0, dim1, dim2, tileSize0, tileSize1, tileSize2, rng0, rng1, rng2, GRange0, GRange1, GRange2);

  }
  /// allocate device memory
  EIGEN_STRONG_INLINE void *allocate(size_t num_bytes) const {
      return m_queue_stream->allocate(num_bytes);
  }
  /// deallocate device memory
  EIGEN_STRONG_INLINE void deallocate(void *p) const {
     m_queue_stream->deallocate(p);
   }

  // some runtime conditions that can be applied here
  EIGEN_STRONG_INLINE bool isDeviceSuitable() const { return true; }

  /// the memcpy function
  template<typename Index> EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const {
    auto it1 = m_queue_stream->find_buffer(static_cast<const void*>(src));
    auto it2 = m_queue_stream->find_buffer(dst);
    auto offset= (static_cast<const uint8_t*>(static_cast<const void*>(src))) - it1->first;
    auto i= (static_cast<const uint8_t*>(dst)) - it2->first;
    offset/=sizeof(Index);
    i/=sizeof(Index);
    size_t rng, GRange, tileSize;
    parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
    sycl_queue().submit([&](cl::sycl::handler &cgh) {
      auto src_acc =it1->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
      auto dst_acc =it2->second.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
      typedef decltype(src_acc) read_accessor;
      typedef decltype(dst_acc) write_accessor;
      cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, i, offset));
    });
    synchronize();
  }

  EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const {
    auto it = m_queue_stream->find_buffer(ptr);
    return (static_cast<const uint8_t*>(ptr))-it->first;

  }
  /// The memcpyHostToDevice is used to copy the device only pointer to a host pointer. Using the device
  /// pointer created as a key we find the sycl buffer and get the host accessor with discard_write mode
  /// on it. Using a discard_write accessor guarantees that we do not bring back the current value of the
  /// buffer to host. Then we use the memcpy to copy the data to the host accessor. The first time that
  /// this buffer is accessed, the data will be copied to the device.
  template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
     m_queue_stream->memcpyHostToDevice(dst,src,n);
  }
  /// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl
  /// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
  /// lifespan of the memcpyDeviceToHost function. We create a kernel to copy the data, from the device- only source buffer to the destination
  /// buffer with map_allocator on the gpu in parallel. At the end of the function call the destination buffer would be destroyed and the data
  /// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
  /// to the cpu only once per function call.
  template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
    m_queue_stream->memcpyDeviceToHost(dst,src,n);
  }
  /// returning the sycl queue
  EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->m_queue;}
  /// Here is the implementation of memset function on sycl.
  EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const {
    size_t rng, GRange, tileSize;
    parallel_for_setup(n, tileSize, rng, GRange);
    auto it1 = m_queue_stream->find_buffer(static_cast<const void*>(data));
    ptrdiff_t buff_offset= (static_cast<const uint8_t*>(data)) - it1->first;
    sycl_queue().submit(memsetCghFunctor(it1->second, buff_offset, rng, GRange, tileSize, c ));
    synchronize();
  }

  struct memsetCghFunctor{
    cl::sycl::buffer<uint8_t, 1>& m_buf;
    const ptrdiff_t& buff_offset;
    const size_t& rng , GRange, tileSize;
    const int  &c;
    memsetCghFunctor(cl::sycl::buffer<uint8_t, 1>& buff,  const ptrdiff_t& buff_offset_, const size_t& rng_,  const size_t& GRange_,  const size_t& tileSize_, const int& c_)
    :m_buf(buff), buff_offset(buff_offset_), rng(rng_), GRange(GRange_), tileSize(tileSize_), c(c_){}

    void operator()(cl::sycl::handler &cgh) const {
      auto buf_acc = m_buf.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
      typedef decltype(buf_acc) AccType;
      cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), memsetkernelFunctor<AccType>(buf_acc, buff_offset, rng, c));
    }
  };

  EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
    // FIXME
    return 48*1024;
  }

  EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
    // We won't try to take advantage of the l2 cache for the time being, and
    // there is no l3 cache on cuda devices.
    return firstLevelCacheSize();
  }
  EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
    return sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_compute_units>();
  //  return stream_->deviceProperties().multiProcessorCount;
  }
  EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
    return sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();

  //  return stream_->deviceProperties().maxThreadsPerBlock;
  }
  EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
    // OpenCL doesnot have such concept
    return 2;//sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
  //  return stream_->deviceProperties().maxThreadsPerMultiProcessor;
  }
  EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
    return sycl_queue().get_device(). template get_info<cl::sycl::info::device::local_mem_size>();
  //  return stream_->deviceProperties().sharedMemPerBlock;
  }
  /// No need for sycl it should act the same as CPU version
  EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; }

  EIGEN_STRONG_INLINE void synchronize() const {
    m_queue_stream->synchronize(); //pass
  }

  EIGEN_STRONG_INLINE void asynchronousExec() const {
    ///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
    //sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled
    m_queue_stream->asynchronousExec();
  }
  // This function checks if the runtime recorded an error for the
  // underlying stream device.
  EIGEN_STRONG_INLINE bool ok() const {
    return m_queue_stream->ok();
  }
};
// This is used as a distingushable device inside the kernel as the sycl device class is not Standard layout.
// This is internal and must not be used by user. This dummy device allow us to specialise the tensor evaluator
// inside the kenrel. So we can have two types of eval for host and device. This is required for TensorArgMax operation
struct SyclKernelDevice:DefaultDevice{};

}  // end namespace Eigen

#endif  // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H