aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h
blob: 61eaeab5d4a805f2f61d0216d0499f9c1993af98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli    Codeplay Software Ltd.
// Ralph Potter  Codeplay Software Ltd.
// Luke Iwanski  Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>

//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H

namespace Eigen {

EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){
  auto devices = cl::sycl::device::get_devices();
  std::vector<cl::sycl::device>::iterator it =devices.begin();
  while(it!=devices.end()) {
    /// get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU )
    auto s=  (*it).template get_info<cl::sycl::info::device::vendor>();
    std::transform(s.begin(), s.end(), s.begin(), ::tolower);
    if((*it).is_cpu() && s.find("amd")!=std::string::npos){
      it=devices.erase(it);
    }
    else{
      ++it;
    }
  }
  return devices;
}
#define ConvertToActualTypeSycl(T, buf_acc) reinterpret_cast<typename cl::sycl::global_ptr<T>::pointer_t>((&(*buf_acc.get_pointer())))

struct QueueInterface {
  /// class members:
  bool exception_caught_ = false;

  mutable std::mutex mutex_;

  /// std::map is the container used to make sure that we create only one buffer
  /// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
  /// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
  mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
  /// sycl queue
  mutable cl::sycl::queue m_queue;
  /// creating device by using cl::sycl::selector or cl::sycl::device both are the same and can be captured throufh dev_Selector typename
  /// SyclStreamDevice is not owned. it is the caller's responsibility to destroy it.
  template<typename dev_Selector> explicit QueueInterface(dev_Selector s):
#ifdef EIGEN_EXCEPTIONS
  m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
    for (const auto& e : l) {
      try {
        if (e) {
           exception_caught_ = true;
           std::rethrow_exception(e);
        }
      } catch (cl::sycl::exception e) {
        std::cerr << e.what() << std::endl;
      }
    }
  }))
#else
  m_queue(cl::sycl::queue(s))
#endif
  {}

  /// Allocating device pointer. This pointer is actually an 8 bytes host pointer used as key to access the sycl device buffer.
  /// The reason is that we cannot use device buffer as a pointer as a m_data in Eigen leafNode expressions. So we create a key
  /// pointer to be used in Eigen expression construction. When we convert the Eigen construction into the sycl construction we
  /// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
  /// The device pointer would be deleted by calling deallocate function.
  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
    auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
    buf.set_final_data(nullptr);
    std::lock_guard<std::mutex> lock(mutex_);
    buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(ptr,buf));
    return static_cast<void*>(ptr);
  }

  /// This is used to deallocate the device pointer. p is used as a key inside
  /// the map to find the device buffer and delete it.
  EIGEN_STRONG_INLINE void deallocate(const void *p) const {
    std::lock_guard<std::mutex> lock(mutex_);
    auto it = buffer_map.find(static_cast<const uint8_t*>(p));
    if (it != buffer_map.end()) {
      buffer_map.erase(it);
    }
  }

  EIGEN_STRONG_INLINE std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator find_buffer(const void* ptr) const {
    std::lock_guard<std::mutex> lock(mutex_);
    auto it1 = buffer_map.find(static_cast<const uint8_t*>(ptr));
    if (it1 != buffer_map.end()){
      return it1;
    }
    else{
      for(std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator it=buffer_map.begin(); it!=buffer_map.end(); ++it){
        auto size = it->second.get_size();
        if((it->first <  (static_cast<const uint8_t*>(ptr))) && ((static_cast<const uint8_t*>(ptr)) < (it->first + size)) ) return it;
      }
    }
    std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling allocate function in SyclDevice"<< std::endl;
    abort();
  }

  // This function checks if the runtime recorded an error for the
  // underlying stream device.
  EIGEN_STRONG_INLINE bool ok() const {
    if (!exception_caught_) {
      m_queue.wait_and_throw();
    }
    return !exception_caught_;
  }

  // destructor
  ~QueueInterface() { buffer_map.clear(); }
};

struct SyclDevice {
  // class member.
  QueueInterface* m_queue_stream;
  /// QueueInterface is not owned. it is the caller's responsibility to destroy it.
  explicit SyclDevice(QueueInterface* queue_stream) : m_queue_stream(queue_stream){}

  /// Creation of sycl accessor for a buffer. This function first tries to find
  /// the buffer in the buffer_map. If found it gets the accessor from it, if not,
  /// the function then adds an entry by creating a sycl buffer for that particular pointer.
  template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer>
  get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const {
    return (get_sycl_buffer(ptr).template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
  }

  /// Accessing the created sycl device buffer for the device pointer
  EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
    return m_queue_stream->find_buffer(ptr)->second;
  }

  /// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
  template<typename Index>
  EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange)  const {
    tileSize =static_cast<Index>(sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2);
    rng = n;
    if (rng==0) rng=static_cast<Index>(1);
    GRange=rng;
    if (tileSize>GRange) tileSize=GRange;
    else if(GRange>tileSize){
      Index xMode =  static_cast<Index>(GRange % tileSize);
      if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode);
    }
  }
  /// allocate device memory
  EIGEN_STRONG_INLINE void *allocate(size_t num_bytes) const {
      return m_queue_stream->allocate(num_bytes);
  }
  /// deallocate device memory
  EIGEN_STRONG_INLINE void deallocate(const void *p) const {
     m_queue_stream->deallocate(p);
   }

  // some runtime conditions that can be applied here
  EIGEN_STRONG_INLINE bool isDeviceSuitable() const { return true; }


  /// the memcpy function
  template<typename T> EIGEN_STRONG_INLINE void memcpy(void *dst, const T *src, size_t n) const {
    auto it1 = m_queue_stream->find_buffer((void*)src);
    auto it2 = m_queue_stream->find_buffer(dst);
    auto offset= (static_cast<const uint8_t*>(static_cast<const void*>(src))) - it1->first;
    auto i= (static_cast<const uint8_t*>(dst)) - it2->first;
    offset/=sizeof(T);
    i/=sizeof(T);
    size_t rng, GRange, tileSize;
    parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
    sycl_queue().submit([&](cl::sycl::handler &cgh) {
      auto src_acc =it1->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
      auto dst_acc =it2->second.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
      cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), TensorSycl::internal::MemCopyFunctor<T>(src_acc, dst_acc, rng, 0, offset));
    });
    synchronize();
  }

  /// The memcpyHostToDevice is used to copy the device only pointer to a host pointer. Using the device
  /// pointer created as a key we find the sycl buffer and get the host accessor with discard_write mode
  /// on it. Using a discard_write accessor guarantees that we do not bring back the current value of the
  /// buffer to host. Then we use the memcpy to copy the data to the host accessor. The first time that
  /// this buffer is accessed, the data will be copied to the device.
  template<typename T> EIGEN_STRONG_INLINE void memcpyHostToDevice(T *dst, const T *src, size_t n) const {
    auto host_acc= get_sycl_buffer(dst). template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>();
    ::memcpy(host_acc.get_pointer(), src, n);
  }
  /// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl
  /// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
  /// lifespan of the memcpyDeviceToHost function. We create a kernel to copy the data, from the device- only source buffer to the destination
  /// buffer with map_allocator on the gpu in parallel. At the end of the function call the destination buffer would be destroyed and the data
  /// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
  /// to the cpu only once per function call.
  template<typename T> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const T *src, size_t n) const {
    auto it = m_queue_stream->find_buffer(src);
    auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
    offset/=sizeof(T);
    size_t rng, GRange, tileSize;
    parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
    // Assuming that the dst is the start of the destination pointer
    auto dest_buf = cl::sycl::buffer<uint8_t, 1, cl::sycl::map_allocator<uint8_t> >(static_cast<uint8_t*>(dst), cl::sycl::range<1>(rng*sizeof(T)));
    sycl_queue().submit([&](cl::sycl::handler &cgh) {
      auto src_acc= it->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
      auto dst_acc =dest_buf.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
      cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), TensorSycl::internal::MemCopyFunctor<T>(src_acc, dst_acc, rng, 0, offset));
    });
    synchronize();
  }
  /// returning the sycl queue
  EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->m_queue;}
  /// Here is the implementation of memset function on sycl.
  template<typename T>  EIGEN_STRONG_INLINE void memset(T *buff, int c, size_t n) const {
    size_t rng, GRange, tileSize;
    parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
    sycl_queue().submit([&](cl::sycl::handler &cgh) {
      auto buf_acc =get_sycl_buffer(static_cast<uint8_t*>(static_cast<void*>(buff))). template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
      cgh.parallel_for<SyclDevice>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) {
        auto globalid=itemID.get_global_linear_id();
        if (globalid< n) {
          for(size_t i=0; i<sizeof(T); i++)
            buf_acc[globalid*sizeof(T) + i] = c;
        }
      });
    });
    synchronize();
  }
  /// No need for sycl it should act the same as CPU version
  EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; }

  EIGEN_STRONG_INLINE void synchronize() const {
    sycl_queue().wait_and_throw(); //pass
  }
  // This function checks if the runtime recorded an error for the
  // underlying stream device.
  EIGEN_STRONG_INLINE bool ok() const {
    return m_queue_stream->ok();
  }
};


}  // end namespace Eigen

#endif  // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H