aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h
blob: 2be1a5ad6a7489b6b94501bbef2d521010ac821c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli    Codeplay Software Ltd.
// Ralph Potter  Codeplay Software Ltd.
// Luke Iwanski  Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>

//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H

namespace Eigen {
struct SyclDevice {
  /// class members
  /// sycl queue
  mutable cl::sycl::queue m_queue;
  /// std::map is the container used to make sure that we create only one buffer
  /// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
  /// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
  mutable std::map<const void *, std::shared_ptr<void>> buffer_map;
  /// creating device by using selector
  template<typename dev_Selector> SyclDevice(dev_Selector s)
  :
#ifdef EIGEN_EXCEPTIONS
  m_queue(cl::sycl::queue(s, [=](cl::sycl::exception_list l) {
    for (const auto& e : l) {
      try {
        std::rethrow_exception(e);
      } catch (cl::sycl::exception e) {
          std::cout << e.what() << std::endl;
        }
    }
  }))
#else
  m_queue(cl::sycl::queue(s))
#endif
  {}
  // destructor
  ~SyclDevice() { deallocate_all(); }

  template <typename T> void deallocate(T *p) const {
    auto it = buffer_map.find(p);
    if (it != buffer_map.end()) {
      buffer_map.erase(it);
      internal::aligned_free(p);
    }
  }
  void deallocate_all() const {
    std::map<const void *, std::shared_ptr<void>>::iterator it=buffer_map.begin();
    while (it!=buffer_map.end()) {
      auto p=it->first;
      buffer_map.erase(it);
      internal::aligned_free(const_cast<void*>(p));
      it=buffer_map.begin();
    }
    buffer_map.clear();
  }

  /// creation of sycl accessor for a buffer. This function first tries to find
  /// the buffer in the buffer_map. If found it gets the accessor from it, if not,
  ///the function then adds an entry by creating a sycl buffer for that particular pointer.
  template <cl::sycl::access::mode AcMd, typename T> inline cl::sycl::accessor<T, 1, AcMd, cl::sycl::access::target::global_buffer>
  get_sycl_accessor(size_t num_bytes, cl::sycl::handler &cgh, const T * ptr) const {
    return (get_sycl_buffer<T>(num_bytes, ptr)->template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
  }

  template<typename T> inline  std::pair<std::map<const void *, std::shared_ptr<void>>::iterator,bool> add_sycl_buffer(const T *ptr, size_t num_bytes) const {
    using Type = cl::sycl::buffer<T, 1>;
    std::pair<std::map<const void *, std::shared_ptr<void>>::iterator,bool> ret;
    if(ptr!=nullptr){
       ret= buffer_map.insert(std::pair<const void *, std::shared_ptr<void>>(ptr, std::shared_ptr<void>(new Type(cl::sycl::range<1>(num_bytes)),
        [](void *dataMem) { delete static_cast<Type*>(dataMem); })));
      (static_cast<Type*>(ret.first->second.get()))->set_final_data(nullptr);
    } else {
      eigen_assert("The device memory is not allocated. Please call allocate on the device!!");
    }
    return ret;
  }

  template <typename T> inline cl::sycl::buffer<T, 1>* get_sycl_buffer(size_t num_bytes,const T * ptr) const {
    return static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(ptr, num_bytes).first->second.get());
  }

  /// allocating memory on the cpu
  void *allocate(size_t) const {
    return internal::aligned_malloc(8);
  }

  // some runtime conditions that can be applied here
  bool isDeviceSuitable() const { return true; }

  void memcpy(void *dst, const void *src, size_t n) const {
    ::memcpy(dst, src, n);
  }

  template<typename T> void memcpyHostToDevice(T *dst, const T *src, size_t n) const {
    auto host_acc= (static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(dst, n).first->second.get()))-> template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>();
    memcpy(host_acc.get_pointer(), src, n);
  }

 inline void parallel_for_setup(size_t n, size_t &tileSize, size_t &rng, size_t &GRange)  const {
      tileSize =m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2;
      rng = n;
      if (rng==0) rng=1;
       GRange=rng;
      if (tileSize>GRange) tileSize=GRange;
      else if(GRange>tileSize){
        size_t xMode = GRange % tileSize;
        if (xMode != 0) GRange += (tileSize - xMode);
      }
    }

  template<typename T> void memcpyDeviceToHost(T *dst, const T *src, size_t n) const {
    auto it = buffer_map.find(src);
    if (it != buffer_map.end()) {
    size_t rng, GRange, tileSize;
    parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);

    auto dest_buf = cl::sycl::buffer<T, 1, cl::sycl::map_allocator<T>>(dst, cl::sycl::range<1>(rng));
    typedef decltype(dest_buf) SYCLDTOH;
    m_queue.submit([&](cl::sycl::handler &cgh) {
      auto src_acc= (static_cast<cl::sycl::buffer<T, 1>*>(it->second.get()))-> template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
      auto dst_acc =dest_buf.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
      cgh.parallel_for<SYCLDTOH>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) {
      auto globalid=itemID.get_global_linear_id();
      if (globalid< dst_acc.get_size()) {
          dst_acc[globalid] = src_acc[globalid];
      }
      });
    });
    m_queue.throw_asynchronous();

    } else{
      eigen_assert("no device memory found. The memory might be destroyed before creation");
    }
  }

  template<typename T>  void memset(T *buff, int c, size_t n) const {

      size_t rng, GRange, tileSize;
      parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
      m_queue.submit([&](cl::sycl::handler &cgh) {
        auto buf_acc =(static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(buff, n).first->second.get()))-> template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
        cgh.parallel_for<SyclDevice>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) {
        auto globalid=itemID.get_global_linear_id();
        auto buf_ptr= reinterpret_cast<typename cl::sycl::global_ptr<unsigned char>::pointer_t>((&(*buf_acc.get_pointer())));
        if (globalid< buf_acc.get_size()) {
          for(size_t i=0; i<sizeof(T); i++)
            buf_ptr[globalid*sizeof(T) + i] = c;
        }
        });
      });
      m_queue.throw_asynchronous();
  }
  int majorDeviceVersion() const {
  return 1;
  }
};

}  // end namespace Eigen

#endif  // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H