aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h
blob: 033318fdcc86e1e492f1c3277147f9de919e681e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli    Codeplay Software Ltd.
// Ralph Potter  Codeplay Software Ltd.
// Luke Iwanski  Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>

//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H

namespace Eigen {

/** \class TensorConvolution
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor convolution class.
 *
 *
 */

enum class convolution_type { CONV1D, CONV2D, CONV3D };
template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
          typename Kernel_accessor, typename Buffer_accessor, convolution_type Conv_Dim>
struct EigenConvolutionKernel;
template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
          typename Kernel_accessor, typename Buffer_accessor>
struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor,
                              Buffer_accessor, convolution_type::CONV1D> {
  typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local>
      Local_accessor;
  Local_accessor local_acc;
  Evaluator device_evaluator;
  Kernel_accessor kernel_filter;
  Buffer_accessor buffer_acc;
  internal::IndexMapper<Index, InputDims, 1, Evaluator::Layout> indexMapper;
  const size_t kernelSize;
  const cl::sycl::range<2> input_range;
  EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_,
                         Buffer_accessor buffer_acc_,
                         internal::IndexMapper<Index, InputDims, 1, Evaluator::Layout> indexMapper_,
                         const size_t kernelSize_, const cl::sycl::range<2> input_range_)
      : local_acc(local_acc_),
        device_evaluator(device_evaluator_),
        kernel_filter(kernel_filter_),
        buffer_acc(buffer_acc_),
        indexMapper(indexMapper_),
        kernelSize(kernelSize_),
        input_range(input_range_) {}

  template <typename BooleanDim2>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim2 boolean_check) {
    return (boolean_check[0] && boolean_check[1]);
  }
  void operator()(cl::sycl::nd_item<2> itemID) {
    auto buffer_ptr = buffer_acc.get_pointer();
    auto kernel_ptr = kernel_filter.get_pointer();
    // the required row to be calculated for the for each plane in shered memory
    const size_t num_input = (itemID.get_local_range()[0] + kernelSize - 1);
    const size_t plane_kernel_offset = itemID.get_local_id(1) * num_input;
    const size_t input_offset = itemID.get_group(0) * itemID.get_local_range()[0];
    const size_t plane_tensor_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(itemID.get_global_id(1));
    /// fill the shared memory
    for (size_t i = itemID.get_local_id(0); i < num_input; i += itemID.get_local_range()[0]) {
      const size_t local_index = i + plane_kernel_offset;
      const size_t tensor_index =
          plane_tensor_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i + input_offset);

      local_acc[local_index] =
          (((i + input_offset) < (input_range[0] + kernelSize - 1)) && itemID.get_global_id(1) < input_range[1])
              ? device_evaluator.coeff(tensor_index)
              : CoeffReturnType(0);
    }

    itemID.barrier(cl::sycl::access::fence_space::local_space);

    // calculate the convolution // output start x
    const size_t first_output_start = itemID.get_group(0) * (itemID.get_local_range()[0]);
    if (boundary_check(itemID.get_global_id() < input_range)) {
      CoeffReturnType result = static_cast<CoeffReturnType>(0);
      const size_t index = plane_kernel_offset + itemID.get_local_id(0);
      for (size_t k = 0; k < kernelSize; ++k) {
        result += (local_acc[k + index] * kernel_ptr[k]);
      }
      const size_t tensor_index =
          indexMapper.mapGpuOutputPlaneToTensorOutputOffset(itemID.get_global_id(1)) +
          indexMapper.mapGpuOutputKernelToTensorOutputOffset(itemID.get_local_id(0) + first_output_start);
      buffer_ptr[tensor_index] = result;
    }
  }
};

template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
          typename Kernel_accessor, typename Buffer_accessor>
struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor,
                              Buffer_accessor, convolution_type::CONV2D> {
  typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local>
      Local_accessor;
  Local_accessor local_acc;
  Evaluator device_evaluator;
  Kernel_accessor kernel_filter;
  Buffer_accessor buffer_acc;
  internal::IndexMapper<Index, InputDims, 2, Evaluator::Layout> indexMapper;
  const cl::sycl::range<2> kernel_size;
  const cl::sycl::range<3> input_range;
  EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_,
                         Buffer_accessor buffer_acc_,
                         internal::IndexMapper<Index, InputDims, 2, Evaluator::Layout> indexMapper_,
                         const cl::sycl::range<2> kernel_size_, const cl::sycl::range<3> input_range_)
      : local_acc(local_acc_),
        device_evaluator(device_evaluator_),
        kernel_filter(kernel_filter_),
        buffer_acc(buffer_acc_),
        indexMapper(indexMapper_),
        kernel_size(kernel_size_),
        input_range(input_range_) {}
  template <typename BooleanDim3>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim3 boolean_check) {
    return (boolean_check[0] && boolean_check[1] && boolean_check[2]);
  }

  void operator()(cl::sycl::nd_item<3> itemID) {
    auto buffer_ptr = buffer_acc.get_pointer();
    auto kernel_ptr = kernel_filter.get_pointer();
    // the required row to be calculated for the for each plane in shered memory
    const auto num_input = cl::sycl::range<2>{
        (cl::sycl::range<2>(itemID.get_local_range()[0], itemID.get_local_range()[1]) + kernel_size - 1)};

    const size_t plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(itemID.get_global_id(2));
    const size_t plane_kernel_offset = itemID.get_local_id(2) * num_input[1];

    const auto input_offset = cl::sycl::range<2>{itemID.get_group(0) * itemID.get_local_range()[0],
                                                 itemID.get_group(1) * itemID.get_local_range()[1]};
      
    // fill the local memory
    bool in_range_dim2 = itemID.get_global_id(2) < input_range[2];
    for (size_t j = itemID.get_local_id(1); j < num_input[1]; j += itemID.get_local_range()[1]) {
      const size_t local_input_offset = num_input[0] * (j + plane_kernel_offset);
      bool in_range_dim1 = ((j + input_offset[1]) < (input_range[1] + kernel_size[1] - 1)); 
      for (size_t i = itemID.get_local_id(0); i < num_input[0]; i += itemID.get_local_range()[0]) {
        const size_t local_index = i + local_input_offset;
        const size_t tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(
                                                             i + input_offset[0], j + input_offset[1]);
        local_acc[local_index] = (((i + input_offset[0]) < (input_range[0] + kernel_size[0] - 1)) &&
                                  in_range_dim1 && in_range_dim2)
                                     ? device_evaluator.coeff(tensor_index)
                                     : CoeffReturnType(0);
      }
    }

    itemID.barrier(cl::sycl::access::fence_space::local_space);

    // output offset start for each thread
    const auto output_offset = cl::sycl::range<2>{itemID.get_group(0) * itemID.get_local_range()[0],
                                                  itemID.get_group(1) * itemID.get_local_range()[1]};

    if (boundary_check(itemID.get_global_id() < input_range)) {
      CoeffReturnType result = static_cast<CoeffReturnType>(0);

      for (size_t j = 0; j < kernel_size[1]; j++) {
        size_t kernel_offset = kernel_size[0] * j;
        const size_t index =
            (num_input[0] * (plane_kernel_offset + j + itemID.get_local_id(1))) + itemID.get_local_id(0);
        for (size_t i = 0; i < kernel_size[0]; i++) {
          result += (local_acc[i + index] * kernel_ptr[i + kernel_offset]);
        }
      }
      const size_t tensor_index =
          indexMapper.mapGpuOutputPlaneToTensorOutputOffset(itemID.get_global_id(2)) +
          indexMapper.mapGpuOutputKernelToTensorOutputOffset(itemID.get_local_id(0) + output_offset[0],
                                                             itemID.get_local_id(1) + output_offset[1]);

      buffer_ptr[tensor_index] = result;
    }
  }
};

template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
          typename Kernel_accessor, typename Buffer_accessor>
struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor,
                              Buffer_accessor, convolution_type::CONV3D> {
  typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local>
      Local_accessor;
  Local_accessor local_acc;
  Evaluator device_evaluator;
  Kernel_accessor kernel_filter;
  Buffer_accessor buffer_acc;
  internal::IndexMapper<Index, InputDims, 3, Evaluator::Layout> indexMapper;
  const cl::sycl::range<3> kernel_size;
  const cl::sycl::range<3> input_range;
  const size_t numP;

  EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_,
                         Buffer_accessor buffer_acc_,
                         internal::IndexMapper<Index, InputDims, 3, Evaluator::Layout> indexMapper_,
                         const cl::sycl::range<3> kernel_size_, const cl::sycl::range<3> input_range_,
                         const size_t numP_)
      : local_acc(local_acc_),
        device_evaluator(device_evaluator_),
        kernel_filter(kernel_filter_),
        buffer_acc(buffer_acc_),
        indexMapper(indexMapper_),
        kernel_size(kernel_size_),
        input_range(input_range_),
        numP(numP_) {}
  template <typename BooleanDim3>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim3 boolean_check) {
    return (boolean_check[0] && boolean_check[1] && boolean_check[2]);
  }
  void operator()(cl::sycl::nd_item<3> itemID) {
    auto buffer_ptr = buffer_acc.get_pointer();
    auto kernel_ptr = kernel_filter.get_pointer();
    const auto num_input = cl::sycl::range<3>{itemID.get_local_range() + kernel_size - 1};

    const auto input_offset = cl::sycl::range<3>{itemID.get_group().get_id() * itemID.get_local_range()};

    const auto output_offset =
          cl::sycl::range<3>{itemID.get_group().get_id() * itemID.get_local_range() + itemID.get_local_id()};

    for (size_t p = 0; p < numP; p++) {
      /// fill the shared memory
      const size_t plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
      for (size_t k = itemID.get_local_id(2); k < num_input[2]; k += itemID.get_local_range()[2]) {
        size_t local_index_dim2 = num_input[0] * num_input[1] * k;
        bool cond_k_dim = (k + input_offset[2] < (input_range[2] + kernel_size[2] - 1));
        for (size_t j = itemID.get_local_id(1); j < num_input[1]; j += itemID.get_local_range()[1]) {
          bool cond_j_dim = cond_k_dim && (j + input_offset[1] < (input_range[1] + kernel_size[1] - 1));
          size_t local_index_dim1 = (num_input[0] * j)  + local_index_dim2;
          for (size_t i = itemID.get_local_id(0); i < num_input[0]; i += itemID.get_local_range()[0]) {
            bool conds = cond_j_dim && (i + input_offset[0] < (input_range[0] + kernel_size[0] - 1));
            const size_t local_index = local_index_dim1 + i;
            const size_t tensor_index =
                plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(
                                         i + input_offset[0], j + input_offset[1], k + input_offset[2]);
            local_acc[local_index] = conds ? device_evaluator.coeff(tensor_index) : CoeffReturnType(0);
          }
        }
      }
      itemID.barrier(cl::sycl::access::fence_space::local_space);

      // calculate the convolution

      if (boundary_check(itemID.get_global_id() < input_range)) {
        CoeffReturnType result = static_cast<CoeffReturnType>(0);
        for (size_t k = 0; k < kernel_size[2]; k++) {
          for (size_t j = 0; j < kernel_size[1]; j++) {
            for (size_t i = 0; i < kernel_size[0]; i++) {
              const size_t kernel_index = i + kernel_size[0] * (j + kernel_size[1] * k);
              const size_t local_index =
                  ((i + itemID.get_local_id(0)) +
                   num_input[0] * ((j + itemID.get_local_id(1)) + num_input[1] * (k + itemID.get_local_id(2))));

              result += (local_acc[local_index] * kernel_ptr[kernel_index]);
            }
          }
        }
        const size_t tensor_index =
            indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p) +
            indexMapper.mapGpuOutputKernelToTensorOutputOffset(output_offset[0], output_offset[1], output_offset[2]);
        buffer_ptr[tensor_index] = result;
      }

      itemID.barrier(cl::sycl::access::fence_space::local_space);
    }
  }
};

template <typename Indices, typename InputArgType, typename KernelArgType>
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Eigen::SyclDevice> {
  typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;

  static const int NumDims =
      internal::array_size<typename TensorEvaluator<InputArgType, Eigen::SyclDevice>::Dimensions>::value;
  static const int NumKernelDims = internal::array_size<Indices>::value;
  typedef typename XprType::Index Index;
  typedef DSizes<Index, NumDims> Dimensions;
  typedef typename TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Dimensions KernelDimensions;
  typedef const Eigen::SyclDevice Device;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Eigen::SyclDevice>::type PacketReturnType;
  typedef typename InputArgType::Scalar Scalar;
  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
  typedef StorageMemory<CoeffReturnType, Eigen::SyclDevice> Storage;
  typedef typename Storage::Type EvaluatorPointerType;
  typedef StorageMemory<const CoeffReturnType, Eigen::SyclDevice> KernelStorage;

  enum {
    IsAligned = TensorEvaluator<InputArgType, Eigen::SyclDevice>::IsAligned &
                TensorEvaluator<KernelArgType, Eigen::SyclDevice>::IsAligned,
    PacketAccess = false,
    BlockAccess = false,
    PreferBlockAccess = false,
    Layout = TensorEvaluator<InputArgType, Eigen::SyclDevice>::Layout,
    CoordAccess = false,  // to be implemented
    RawAccess = false
  };

  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
  typedef internal::TensorBlockNotImplemented TensorBlock;
  //===--------------------------------------------------------------------===//

  TensorEvaluator(const XprType &op, const Eigen::SyclDevice &device)
      : m_inputImpl(op.inputExpression(), device),
        m_kernelArg(op.kernelExpression()),
        m_kernelImpl(op.kernelExpression(), device),
        m_indices(op.indices()),
        m_buf(NULL),
        m_kernel(NULL),
        m_local_kernel(false),
        m_device(device) {
    EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Eigen::SyclDevice>::Layout) ==
                         static_cast<int>(TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Layout)),
                        YOU_MADE_A_PROGRAMMING_MISTAKE);

    const typename TensorEvaluator<InputArgType, Eigen::SyclDevice>::Dimensions &input_dims = m_inputImpl.dimensions();
    const typename TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Dimensions &kernel_dims =
        m_kernelImpl.dimensions();

    m_dimensions = m_inputImpl.dimensions();
    for (int i = 0; i < NumKernelDims; ++i) {
      const Index index = op.indices()[i];
      const Index input_dim = input_dims[index];
      const Index kernel_dim = kernel_dims[i];
      const Index result_dim = input_dim - kernel_dim + 1;
      m_dimensions[index] = result_dim;
    }
  }

  EIGEN_DEVICE_FUNC const Dimensions &dimensions() const { return m_dimensions; }

  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
    preloadKernel();
    m_inputImpl.evalSubExprsIfNeeded(NULL);
    if (data) {
      executeEval(data);
      return false;
    } else {
      m_buf = (EvaluatorPointerType)m_device.get(
          (Scalar *)m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)));
      executeEval(m_buf);
      return true;
    }
  }

  EIGEN_STRONG_INLINE void cleanup() {
    m_inputImpl.cleanup();
    if (m_buf) {
      m_device.deallocate_temp(m_buf);
      m_buf = NULL;
    }
    if (m_local_kernel) {
      m_device.deallocate_temp(m_kernel);
      m_local_kernel = false;
    }
    m_kernel = NULL;
  }
  /// used by sycl in order to build the sycl buffer
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device &device() const { return m_device; }
  /// used by sycl in order to build the sycl buffer
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return m_buf; }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
    // Don't make a local copy of the kernel unless we have to (i.e. it's an
    // expression that needs to be evaluated)
    typename KernelStorage::Type in_place = m_kernelImpl.data();
    if (in_place) {
      m_kernel = in_place;
      m_local_kernel = false;
    } else {
      ptrdiff_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
      EvaluatorPointerType local = (EvaluatorPointerType)m_device.get((Scalar *)m_device.allocate_temp(kernel_sz));
      typedef TensorEvalToOp<const KernelArgType> EvalTo;
      EvalTo evalToTmp(m_device.get(local), m_kernelArg);
      const bool PacketAccess = internal::IsVectorizable<Eigen::SyclDevice, KernelArgType>::value;
      internal::TensorExecutor<const EvalTo, Eigen::SyclDevice, PacketAccess>::run(evalToTmp, m_device);
      m_kernel = local;
      m_local_kernel = true;
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void executeEval(EvaluatorPointerType data) const {
    typedef TensorEvaluator<InputArgType, Eigen::SyclDevice> InputEvaluator;
    typedef typename InputEvaluator::Dimensions InputDims;
    switch (NumKernelDims) {
      case 1: {
        const size_t numX = dimensions()[m_indices[0]];
        const size_t numP = dimensions().TotalSize() / numX;
        const auto input_dim = std::array<size_t, 2>{numX, numP};
        auto global_range = cl::sycl::range<2>{};
        auto local_range = cl::sycl::range<2>{};
        const size_t kernel_size = m_kernelImpl.dimensions().TotalSize();

        m_device.parallel_for_setup(input_dim, global_range, local_range);
        const size_t local_memory_size = (local_range[0] + kernel_size - 1) * (local_range[1]);
        gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock());
        const array<Index, 1> indices{{m_indices[0]}};
        const array<Index, 1> kernel_dims{{m_kernelImpl.dimensions()[0]}};
        internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);

        typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims,
                                       typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV1D>
            ConvKernel;

        m_device.template binary_kernel_launcher<CoeffReturnType, ConvKernel>(
            m_inputImpl, m_kernel, data, cl::sycl::nd_range<2>(global_range, local_range), local_memory_size,
            indexMapper, kernel_size, cl::sycl::range<2>(input_dim[0], input_dim[1]));
        break;
      }

      case 2: {
        auto kernel_index = std::array<size_t, 2>{static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1,
                                                  static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0};
        auto kernel_size = cl::sycl::range<2>{(size_t)m_kernelImpl.dimensions()[kernel_index[0]],
                                              (size_t)m_kernelImpl.dimensions()[kernel_index[1]]};
        const size_t numX = dimensions()[m_indices[kernel_index[0]]];
        const size_t numY = dimensions()[m_indices[kernel_index[1]]];
        const size_t numP = dimensions().TotalSize() / (numX * numY);
        auto input_dim = std::array<size_t, 3>{numX, numY, numP};

        auto global_range = cl::sycl::range<3>{};
        auto local_range = cl::sycl::range<3>{};

        m_device.parallel_for_setup(input_dim, global_range, local_range);

        const size_t local_memory_size =
            (local_range[0] + kernel_size[0] - 1) * (local_range[1] + kernel_size[1] - 1) * local_range[2];
        gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock());
        const array<Index, 2> indices{{m_indices[kernel_index[0]], m_indices[kernel_index[1]]}};
        const array<Index, 2> kernel_dims{
            {m_kernelImpl.dimensions()[kernel_index[0]], m_kernelImpl.dimensions()[kernel_index[1]]}};
        internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
        typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims,
                                       typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV2D>
            ConvKernel;
        m_device.template binary_kernel_launcher<CoeffReturnType, ConvKernel>(
            m_inputImpl, m_kernel, data, cl::sycl::nd_range<3>(global_range, local_range), local_memory_size,
            indexMapper, kernel_size, cl::sycl::range<3>{input_dim[0], input_dim[1], input_dim[2]});
        break;
      }

      case 3: {
        auto kernel_index = std::array<size_t, 3>{static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2,
                                                  static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1,
                                                  static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0};

        auto kernel_size = cl::sycl::range<3>{(size_t)m_kernelImpl.dimensions()[kernel_index[0]],
                                              (size_t)m_kernelImpl.dimensions()[kernel_index[1]],
                                              (size_t)m_kernelImpl.dimensions()[kernel_index[2]]};

        const size_t numX = dimensions()[m_indices[kernel_index[0]]];
        const size_t numY = dimensions()[m_indices[kernel_index[1]]];
        const size_t numZ = dimensions()[m_indices[kernel_index[2]]];
        auto input_dim = std::array<size_t, 3>{numX, numY, numZ};
        const size_t numP = dimensions().TotalSize() / (numX * numY * numZ);

        const array<Index, 3> indices{
            {m_indices[kernel_index[0]], m_indices[kernel_index[1]], m_indices[kernel_index[2]]}};
        const array<Index, 3> kernel_dims{{m_kernelImpl.dimensions()[kernel_index[0]],
                                           m_kernelImpl.dimensions()[kernel_index[1]],
                                           m_kernelImpl.dimensions()[kernel_index[2]]}};

        internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);

        auto global_range = cl::sycl::range<3>{};
        auto local_range = cl::sycl::range<3>{};

        m_device.parallel_for_setup(input_dim, global_range, local_range);
        auto local_memory_range = (local_range + kernel_size - 1);
        const size_t local_memory_size = local_memory_range[0] * local_memory_range[1] * local_memory_range[2];

        gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock());
        typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims,
                                       typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV3D>
            ConvKernel;
        m_device.template binary_kernel_launcher<CoeffReturnType, ConvKernel>(
            m_inputImpl, m_kernel, data, cl::sycl::nd_range<3>(global_range, local_range), local_memory_size,
            indexMapper, kernel_size, cl::sycl::range<3>(input_dim[0], input_dim[1], input_dim[2]), numP);
        break;
      }

      default: {
        EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3),
                            THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
    eigen_assert(m_buf != NULL);
    eigen_assert(index < m_dimensions.TotalSize());
    return m_buf[index];
  }

  template <int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const {
    eigen_assert(m_buf != NULL);
    eigen_assert(index < m_dimensions.TotalSize());
    return internal::ploadt<PacketReturnType, LoadMode>(m_buf + index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    // TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
    // model.
    const double kernel_size = m_kernelImpl.dimensions().TotalSize();
    // We ignore the use of fused multiply-add.
    const double convolve_compute_cost = TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
    const double firstIndex_compute_cost =
        NumDims *
        (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>());
    return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
           kernel_size * (m_inputImpl.costPerCoeff(vectorized) + m_kernelImpl.costPerCoeff(vectorized) +
                          TensorOpCost(0, 0, convolve_compute_cost, vectorized, PacketSize));
  }
  // binding placeholder accessors to a command group handler for SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
    m_kernelImpl.bind(cgh);
    m_inputImpl.bind(cgh);
    m_buf.bind(cgh);
    m_kernel.bind(cgh);
  }

 private:
  // No assignment (copies are needed by the kernels)
  TensorEvaluator &operator=(const TensorEvaluator &);
  TensorEvaluator<InputArgType, Eigen::SyclDevice> m_inputImpl;
  KernelArgType m_kernelArg;
  TensorEvaluator<KernelArgType, Eigen::SyclDevice> m_kernelImpl;
  Indices m_indices;
  Dimensions m_dimensions;
  EvaluatorPointerType m_buf;
  typename KernelStorage::Type m_kernel;
  bool m_local_kernel;
  const Eigen::SyclDevice EIGEN_DEVICE_REF m_device;
};  // namespace Eigen

}  // end namespace Eigen

#endif  // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H