aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
blob: dc05133054c19616d85d995492c5a2b9e3ce3cd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H

// evaluator for thread pool device
#ifdef EIGEN_USE_THREADS

namespace Eigen {
namespace internal {

template<typename LhsScalar, typename LhsMapper, typename Index>
struct packLhsArg {
  LhsScalar* blockA;
  const LhsMapper& lhs;
  const Index m_start;
  const Index k_start;
  const Index mc;
  const Index kc;
};

template<typename LhsScalar, typename RhsScalar, typename RhsMapper, typename OutputMapper, typename Index>
struct packRhsAndKernelArg {
  const std::vector<LhsScalar*>* blockAs;
  RhsScalar* blockB;
  const RhsMapper& rhs;
  OutputMapper& output;
  const Index m;
  const Index k;
  const Index n;
  const Index mc;
  const Index kc;
  const Index nc;
  const Index num_threads;
  const Index num_blockAs;
  const Index max_m;
  const Index k_block_idx;
  const Index m_block_idx;
  const Index n_block_idx;
  const Index m_blocks;
  const Index n_blocks;
  std::vector<Promise>* kernel_promises;
  const std::vector<Future>* lhs_futures;
  const bool need_to_pack;
};

}  // end namespace internal


template<typename Indices, typename LeftArgType, typename RightArgType>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
    public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > {

  typedef ThreadPoolDevice Device;

  typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
  typedef TensorContractionEvaluatorBase<Self> Base;

  typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
  typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
  typedef typename XprType::Packet Packet;
  typedef typename XprType::Index Index;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename XprType::PacketReturnType PacketReturnType;

  typedef array<Index, TensorEvaluator<LeftArgType, Device>::Dimensions::count> left_dim_mapper_t;
  typedef array<Index, TensorEvaluator<RightArgType, Device>::Dimensions::count> right_dim_mapper_t;

  typedef array<Index, internal::array_size<Indices>::value> contract_t;
  typedef array<Index, max_n_1<TensorEvaluator<LeftArgType, Device>::Dimensions::count - internal::array_size<Indices>::value>::size> left_nocontract_t;
  typedef array<Index, max_n_1<TensorEvaluator<RightArgType, Device>::Dimensions::count - internal::array_size<Indices>::value>::size> right_nocontract_t;

  static const int NumDims = max_n_1<TensorEvaluator<LeftArgType, Device>::Dimensions::count + TensorEvaluator<RightArgType, Device>::Dimensions::count - 2 * internal::array_size<Indices>::value>::size;

  typedef DSizes<Index, NumDims> Dimensions;

  // typedefs needed in evalTo
  typedef typename internal::remove_const<typename LeftArgType::Scalar>::type LhsScalar;
  typedef typename internal::remove_const<typename RightArgType::Scalar>::type RhsScalar;
  typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;

  typedef TensorEvaluator<LeftArgType, Device> LeftEvaluator;
  typedef TensorEvaluator<RightArgType, Device> RightEvaluator;

  TensorEvaluator(const XprType& op, const Device& device) :
      Base(op, device) {}

  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
  void evalTyped(Scalar* buffer) const {
    // columns in left side, rows in right side
    const Index k = this->m_k_size;

    // rows in left side
    const Index m = this->m_i_size;

    // columns in right side
    const Index n = this->m_j_size;

    // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
    this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));


    const int lhs_packet_size = internal::packet_traits<LhsScalar>::size;
    const int rhs_packet_size = internal::packet_traits<RhsScalar>::size;

    typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
                                                   LeftEvaluator, left_nocontract_t,
                                                   contract_t, lhs_packet_size,
                                                   lhs_inner_dim_contiguous,
                                                   false, Unaligned> LhsMapper;

    typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
                                                   RightEvaluator, right_nocontract_t,
                                                   contract_t, rhs_packet_size,
                                                   rhs_inner_dim_contiguous,
                                                   rhs_inner_dim_reordered, Unaligned> RhsMapper;

    typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;

    // TODO: packing could be faster sometimes if we supported row major tensor mappers
    typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
                                    Traits::LhsProgress, ColMajor> LhsPacker;
    typedef internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker;

    // TODO: replace false, false with conjugate values?
    typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
                                  Traits::mr, Traits::nr, false, false> GebpKernel;

    typedef internal::packLhsArg<LhsScalar, LhsMapper, Index> packLArg;
    typedef internal::packRhsAndKernelArg<LhsScalar, RhsScalar, RhsMapper, OutputMapper, Index> packRKArg;

    // initialize data mappers
    LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
                  this->m_left_contracting_strides, this->m_k_strides);

    RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
                  this->m_right_contracting_strides, this->m_k_strides);

    OutputMapper output(buffer, m);

    LhsPacker pack_lhs;

    // compute block sizes (which depend on number of threads)
    const Index num_threads = this->m_device.numThreads();
    Index mc = m;
    Index nc = n;
    Index kc = k;
    internal::computeProductBlockingSizes<LhsScalar,RhsScalar,1>(kc, mc, nc/*, num_threads*/);
    eigen_assert(mc <= m);
    eigen_assert(nc <= n);
    eigen_assert(kc <= k);

#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
    const Index k_blocks = CEIL_DIV(k, kc);
    const Index n_blocks = CEIL_DIV(n, nc);
    const Index m_blocks = CEIL_DIV(m, mc);
    const int sizeA = mc * kc;
    const int sizeB = kc * nc;

    /*    cout << "m: " << m << " n: " << n << " k: " << k << endl;
    cout << "mc: " << mc << " nc: " << nc << " kc: " << kc << endl;
    cout << "m_blocks: " << m_blocks << " n_blocks: " << n_blocks << " k_blocks: " << k_blocks << endl;
    cout << "num threads: " << num_threads << endl;
    */

    // note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB
    //       aren't 16 byte aligned segfaults will happen due to SIMD instructions
    // note: You can get away with allocating just a single blockA and offsets and meet the
    //       the alignment requirements with the assumption that
    //       (Traits::mr * sizeof(ResScalar)) % 16 == 0
    const Index numBlockAs = (std::min)(num_threads, m_blocks);
    std::vector<LhsScalar *> blockAs;
    blockAs.reserve(num_threads);
    for (int i = 0; i < num_threads; i++) {
      blockAs.push_back(static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar))));
    }

    // To circumvent alignment issues, I'm just going to separately allocate the memory for each thread
    // TODO: is this too much memory to allocate? This simplifies coding a lot, but is wasteful.
    //       Other options: (1) reuse memory when a thread finishes. con: tricky
    //                      (2) allocate block B memory in each thread. con: overhead
    std::vector<RhsScalar *> blockBs;
    blockBs.reserve(n_blocks);
    for (int i = 0; i < n_blocks; i++) {
      blockBs.push_back(static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar))));
    }

    // lhs_futures starts with all null futures
    std::vector<Future> lhs_futures(num_threads);

    // this should really be numBlockAs * n_blocks;
    const Index num_kernel_promises = num_threads * n_blocks;
    Promise p;
    p.set_value();
    std::vector<Promise> kernel_promises(num_kernel_promises, p);

    for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) {
      const Index k_start = k_block_idx * kc;
      // make sure we don't overshoot right edge of left matrix
      const Index actual_kc = (std::min)(k_start + kc, k) - k_start;

      for (Index m_block_idx = 0; m_block_idx < m_blocks; m_block_idx += numBlockAs) {
        const int num_blocks = (std::min)(m_blocks-m_block_idx, numBlockAs);

        for (Index mt_block_idx = m_block_idx; mt_block_idx < m_block_idx+num_blocks; mt_block_idx++) {
          const Index m_start = mt_block_idx * mc;
          const Index actual_mc = (std::min)(m_start + mc, m) - m_start;
          eigen_assert(actual_mc > 0);

          int blockAId = (k_block_idx * m_blocks + mt_block_idx) % num_threads;
          for (int i = 0; i < n_blocks; ++i) {
            int future_id = (blockAId * n_blocks + i);
            wait_until_ready(&kernel_promises[future_id]);
            kernel_promises[future_id] = Promise();
          }
          const packLArg arg = {
            blockAs[blockAId], // blockA
            lhs,        // lhs
            m_start,    // m
            k_start,    // k
            actual_mc,  // mc
            actual_kc,  // kc
          };

          lhs_futures[blockAId] =
              this->m_device.enqueue(&Self::packLhs<packLArg, LhsPacker>, arg);
        }

        // now start kernels.
        const Index m_base_start = m_block_idx * mc;
        const bool need_to_pack = m_block_idx == 0;

        for (Index n_block_idx = 0; n_block_idx < n_blocks; n_block_idx++) {
          const Index n_start = n_block_idx * nc;
          const Index actual_nc = (std::min)(n_start + nc, n) - n_start;

          // first make sure the previous kernels are all done before overwriting rhs. Also wait if
          // we're going to start new k. In both cases need_to_pack is true.
          if (need_to_pack) {
            for (int i = num_blocks; i < num_threads; ++i) {
              int blockAId = (k_block_idx * m_blocks + i + m_block_idx) % num_threads;
              int future_id = (blockAId * n_blocks + n_block_idx);
              wait_until_ready(&kernel_promises[future_id]);
            }
          }

          packRKArg arg = {
            &blockAs, // blockA
            blockBs[n_block_idx], // blockB
            rhs,          // rhs
            output,       // output
            m_base_start, // m
            k_start,      // k
            n_start,      // n
            mc,           // mc
            actual_kc,    // kc
            actual_nc,    // nc
            num_threads,
            numBlockAs,
            m,
            k_block_idx,
            m_block_idx,
            n_block_idx, // n_block_idx
            m_blocks, // m_blocks
            n_blocks, // n_blocks
            &kernel_promises, // kernel_promises
            &lhs_futures, // lhs_futures
            need_to_pack, // need_to_pack
          };

	  typedef decltype(Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>) Func;
          this->m_device.enqueueNoFuture<Func, packRKArg>(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
        }
      }
    }

    // collect the last frame of kernel futures
    for (int i = 0; i < kernel_promises.size(); ++i) {
      wait_until_ready(&kernel_promises[i]);
    }

    // deallocate all of the memory for both A and B's
    for (int i = 0; i < blockAs.size(); i++) {
      this->m_device.deallocate(blockAs[i]);
    }
    for (int i = 0; i < blockBs.size(); i++) {
      this->m_device.deallocate(blockBs[i]);
    }

#undef CEIL_DIV
  }

  /*
   * Packs a LHS block of size (mt, kc) starting at lhs(m, k). Before packing
   * the LHS block, check that all of the kernels that worked on the same
   * mt_block_idx in the previous m_block are done.
   */
  template <typename packLArg, typename LhsPacker>
  static void packLhs(const packLArg arg) {
    // perform actual packing
    LhsPacker pack_lhs;
    pack_lhs(arg.blockA, arg.lhs.getSubMapper(arg.m_start, arg.k_start), arg.kc, arg.mc);
  }

  /*
   * Packs a RHS block of size (kc, nc) starting at (k, n) after checking that
   * all kernels in the previous block are done.
   * Then for each LHS future, we wait on the future and then call GEBP
   * on the area packed by the future (which starts at
   * blockA + future_idx * mt * kc) on the LHS and with the full packed
   * RHS block.
   * The output of this GEBP is written to output(m + i * mt, n).
   */
  template <typename packRKArg, typename RhsPacker, typename GebpKernel>
  static void packRhsAndKernel(packRKArg arg) {
    if (arg.need_to_pack) {
      RhsPacker pack_rhs;
      pack_rhs(arg.blockB, arg.rhs.getSubMapper(arg.k, arg.n), arg.kc, arg.nc);
    }

    GebpKernel gebp;
    for (Index mt_block_idx = 0; mt_block_idx < arg.num_blockAs; mt_block_idx++) {
      const Index m_base_start = arg.m + arg.mc*mt_block_idx;
      if (m_base_start < arg.max_m) {
        int blockAId = (arg.k_block_idx * arg.m_blocks + mt_block_idx + arg.m_block_idx) % arg.num_threads;

        wait_until_ready(&(*arg.lhs_futures)[blockAId]);
        const Index actual_mc = (std::min)(m_base_start + arg.mc, arg.max_m) - m_base_start;
        gebp(arg.output.getSubMapper(m_base_start, arg.n),
             (*arg.blockAs)[blockAId], arg.blockB,
             actual_mc, arg.kc, arg.nc, 1.0, -1, -1, 0, 0);

        const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx;
        eigen_assert(!(*arg.kernel_promises)[set_idx].ready());
        (*arg.kernel_promises)[set_idx].set_value();
      }
    }
  }
};

} // end namespace Eigen

#endif  // EIGEN_USE_THREADS
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H