aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
blob: 21be6ea425b4421bfa2c472e99a8e1a5c31af11a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H

// evaluator for thread pool device
#ifdef EIGEN_USE_THREADS

namespace Eigen {

template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> :
    public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> > {

  typedef ThreadPoolDevice Device;

  typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
  typedef TensorContractionEvaluatorBase<Self> Base;

  typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
  typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
  typedef typename XprType::Index Index;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;

  enum {
    Layout = TensorEvaluator<LeftArgType, Device>::Layout,
  };

  // Most of the code is assuming that both input tensors are ColMajor. If the
  // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
  // If we want to compute A * B = C, where A is LHS and B is RHS, the code
  // will pretend B is LHS and A is RHS.
  typedef typename internal::conditional<
    static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
  typedef typename internal::conditional<
    static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;

  static const int LDims =
      internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
  static const int RDims =
      internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
  static const int ContractDims = internal::array_size<Indices>::value;

  typedef array<Index, LDims> left_dim_mapper_t;
  typedef array<Index, RDims> right_dim_mapper_t;

  typedef array<Index, ContractDims> contract_t;
  typedef array<Index, LDims - ContractDims> left_nocontract_t;
  typedef array<Index, RDims - ContractDims> right_nocontract_t;

  static const int NumDims = LDims + RDims - 2 * ContractDims;

  typedef DSizes<Index, NumDims> Dimensions;

  // typedefs needed in evalTo
  typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
  typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
  typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;

  typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
  typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;

  TensorEvaluator(const XprType& op, const Device& device) :
      Base(op, device) {}

  template <int Alignment>
  void evalProduct(Scalar* buffer) const {
    evalProductImpl<NoCallback, Alignment>(buffer, NoCallback());
  }

  template <typename EvalToCallback, int Alignment>
  void evalProductAsync(Scalar* buffer, EvalToCallback done) const {
    evalProductImpl<EvalToCallback, Alignment>(buffer, std::move(done));
  }

  template <typename DoneCallback, int Alignment>
  void evalProductImpl(Scalar* buffer, DoneCallback done) const {
    // This function computes a lot of heuristics in multiple steps, and it
    // also has multiple exit points. To keep it sane, readable and all in one
    // place, sync/async execution decision is made at runtime at the very end.
    //
    // (1) In sync mode we allocate Context on the stack, submit computations
    //     to the device thread pool, and block on a barrier until it is
    //     completed.
    //
    // (2) In async mode we allocate Context on the heap, and after all tasks
    //     are finished, we call provided the done callback, and delete a
    //     context from the heap.
    //
    // (*) EvalParallelContext & EvalShardedByInnerDimContext owns all the state
    // and temporary buffers, requried for executing the tensor contraction.
    // They are responsible for cleaning it up after contraction is done.
    static const bool IsEvalInSyncMode =
        std::is_same<DoneCallback, NoCallback>::value;

    const Index m = this->m_i_size;
    const Index n = this->m_j_size;
    const Index k = this->m_k_size;
    if (m == 0 || n == 0 || k == 0) return;

    // Compute a set of algorithm parameters:
    // - kernel block sizes (bm, bn, bk)
    // - task grain sizes (number of kernels executed per task: gm, gn)
    // - number of threads
    // - sharding by row/column
    // - parallel packing or first lhs then rhs
    // and some derived parameters:
    // - number of tasks (nm, nn, nk)
    // - number of kernels (nm0, nn0)
    // Unfortunately, all these parameters are tightly interdependent.
    // So in some cases we first compute approximate values, then compute other
    // values based on these approximations and then refine the approximations.

    // There are lots of heuristics here. There is some reasoning behind them,
    // but ultimately they are just tuned on contraction benchmarks for
    // different input configurations, thread counts and instruction sets.
    // So feel free to question any of them.

    // Compute whether we want to shard by row or by column.
    // This is a first approximation, it will be refined later. Since we don't
    // know number of threads yet we use 2, because what's we are most
    // interested in at this point is whether it makes sense to use
    // parallelization at all or not.
    bool shard_by_col = shardByCol(m, n, 2);

    // First approximation of kernel blocking sizes.
    // Again, we don't know number of threads yet, so we use 2.
    Index bm, bn, bk;
    if (shard_by_col) {
      internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
                                          internal::ShardByCol>
          blocking(k, m, n, 2);
      bm = blocking.mc();
      bn = blocking.nc();
      bk = blocking.kc();
    } else {
      internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
                                          internal::ShardByRow>
          blocking(k, m, n, 2);
      bm = blocking.mc();
      bn = blocking.nc();
      bk = blocking.kc();
    }

    // Compute optimal number of threads.
    // Note: we use bk instead of k here because we are interested in amount of
    // _parallelizable_ computations, and computations are not parallelizable
    // across k dimension.
    const TensorOpCost cost =
        contractionCost(m, n, bm, bn, bk, shard_by_col, false);
    int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
        static_cast<double>(n) * m, cost, this->m_device.numThreads());
    int num_threads_by_k = numThreadsInnerDim(m, n, k);
    if (shardByInnerDim(m, n, k, num_threads, num_threads_by_k)) {
      // We are in the scenario where it is more effective to shard by the
      // inner dimension.
      if (IsEvalInSyncMode) {
        EvalShardedByInnerDimContext<DoneCallback> ctx(
            this, num_threads_by_k, buffer, m, n, k, std::move(done));
        ctx.template run<Alignment>();
      } else {
        auto* ctx = new EvalShardedByInnerDimContext<DoneCallback>(
            this, num_threads_by_k, buffer, m, n, k, std::move(done));
        ctx->template runAsync<Alignment>();
      }

      return;
    }

    // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
    // model is not tuned. Remove this when the cost model is tuned.
    if (n == 1) num_threads = 1;

    if (num_threads == 1) {
      TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential,
                                  Unaligned, (buffer));
      if (!IsEvalInSyncMode) done();
      return;
    }

    // Now that we know number of threads, recalculate sharding and blocking.
    shard_by_col = shardByCol(m, n, num_threads);
    if (shard_by_col) {
      internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
                                          internal::ShardByCol>
          blocking(k, m, n, num_threads);
      bm = blocking.mc();
      bn = blocking.nc();
      bk = blocking.kc();
    } else {
      internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
                                          internal::ShardByRow>
          blocking(k, m, n, num_threads);
      bm = blocking.mc();
      bn = blocking.nc();
      bk = blocking.kc();
    }

    // Number of kernels for each dimension.
    Index nm0 = divup(m, bm);
    Index nn0 = divup(n, bn);
    Index nk = divup(k, bk);

    // Calculate task grain size (number of kernels executed per task).
    // This task size coarsening serves two purposes:
    // 1. It reduces per-task overheads including synchronization overheads.
    // 2. It allows to use caches better (reuse the same packed rhs in several
    // consecutive kernels).
    Index gm = 1;
    Index gn = 1;
    // If we are sharding by column, then we prefer to reduce rows first.
    if (shard_by_col) {
      gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
      gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
    } else {
      gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
      gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
    }
    // Number of tasks in each dimension.
    Index nm = divup(nm0, gm);
    Index nn = divup(nn0, gn);

    // If there is enough concurrency in the sharding dimension, we choose not
    // to paralellize by the other dimension, and execute all kernels in sync
    // mode. This reduces parallelism from the nm x nn down to nn
    // (shard_by_col==true) or nm (shard_by_col==false).
    const Index sharding_dim_tasks = shard_by_col ? nn : nm;
    const int num_worker_threads = this->m_device.numThreadsInPool();

    // With small number of threads we want to make sure that we do not reduce
    // parallelism too much. With large number of threads we trade maximum
    // parallelism for better memory locality.
    const float oversharding_factor =
        num_worker_threads <= 4  ? 8.0 :
        num_worker_threads <= 8  ? 4.0 :
        num_worker_threads <= 16 ? 2.0 :
        num_worker_threads <= 32 ? 1.0 :
        num_worker_threads <= 64 ? 0.8 : /* num_worker_threads > 64 */ 0.6;

    const bool parallelize_by_sharding_dim_only =
        sharding_dim_tasks >= oversharding_factor * num_worker_threads;

    // Last by not least, decide whether we want to issue both lhs and rhs
    // packing in parallel; or issue lhs packing first, and then issue rhs
    // packing when lhs packing completes (for !shard_by_col lhs and rhs are
    // swapped). Parallel packing allows more parallelism (for both packing and
    // kernels), while sequential packing provides better locality (once
    // a thread finishes rhs packing it proceed to kernels with that rhs).
    // First, we are interested in parallel packing if there are few tasks.
    bool parallel_pack = num_threads >= nm * nn;
    // Also do parallel packing if all data fits into L2$.
    if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <=
        l2CacheSize() * num_threads)
      parallel_pack = true;
    // But don't do it if we will use each rhs only once. Locality seems to be
    // more important in this case.
    if ((shard_by_col ? nm : nn) == 1) parallel_pack = false;
    // Also don't get in the way of parallelize_by_sharding_dim_only
    // optimization.
    if (parallelize_by_sharding_dim_only) parallel_pack = false;

    // TODO(ezhulnev): With if contexpr we don't need SyncEvalParallelContext.
    if (IsEvalInSyncMode) {
#define CONTEXT_ARGS                                                        \
  (this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \
   nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only,      \
   NoCallback())                                                            \
      .run()
      TENSOR_CONTRACTION_DISPATCH(SyncEvalParallelContext, Alignment,
                                  CONTEXT_ARGS);
#undef CONTEXT_ARGS

    } else {
#define CONTEXT_ARGS                                                        \
  (this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \
   nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only,      \
   std::move(done))
      TENSOR_CONTRACTION_ASYNC_DISPATCH(EvalParallelContext, DoneCallback,
                                        Alignment, CONTEXT_ARGS, run());
#undef CONTEXT_ARGS
    }
  }

  // ------------------------------------------------------------------------ //

  // Dummy struct to represent an empty DoneCallback.

  struct NoCallback {
    void operator()() {
      eigen_assert(false && "NoCallback should never be called");
    }
  };

  // ------------------------------------------------------------------------ //

  template <typename DoneCallback, typename Context>
  class EvalParallelNotification;

  // Synchronous evaluation notification that blocks caller thread in Wait().
  template <typename Context>
  class EvalParallelNotification<NoCallback, Context> {
   public:
    EvalParallelNotification(Context*, NoCallback) {}
    void Notify() { done_.Notify(); }
    void Wait() { done_.Wait(); }
   private:
    Eigen::Notification done_;
  };

  // Asynchronous evaluation notification that does not block in Wait().
  template <typename DoneCallback, typename Context>
  class EvalParallelNotification {
   public:
    EvalParallelNotification(Context* ctx, DoneCallback done)
        : ctx_(ctx), done_(std::move(done)) {}

    void Notify() {
      // Make a copy of done callback, because it will be destructed when we
      // will delete context in the next line (EvalParallelNotification is a
      // data member of EvalParallelContext class).
      DoneCallback done_copy = std::move(done_);

      // Delete parallel evaluation context.
      delete ctx_;

      // Now safely call the done callback.
      done_copy();
    }

    void Wait() {}

   private:
    Context* ctx_;
    DoneCallback done_;
  };

  // Context orchestrates sync/async parallel contraction evaluation. When it is
  // executed in asynchronous mode, it owns all the shared state that might be
  // accessible by block packing and kernel tasks.

  template <typename DoneCallback, bool lhs_inner_dim_contiguous,
            bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered,
            int Alignment>
  class EvalParallelContext {
   public:
    typedef internal::TensorContractionInputMapper<
        LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
        contract_t, internal::packet_traits<LhsScalar>::size,
        lhs_inner_dim_contiguous, false, Unaligned>
        LhsMapper;
    typedef internal::TensorContractionInputMapper<
        RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t,
        contract_t, internal::packet_traits<RhsScalar>::size,
        rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
        RhsMapper;

    typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;

    typedef internal::TensorContractionKernel<
        Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper>
        TensorContractionKernel;

    typedef typename TensorContractionKernel::LhsBlock LhsBlock;
    typedef typename TensorContractionKernel::RhsBlock RhsBlock;
    typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;

    EvalParallelContext(const Self* self, int num_threads, Scalar* buffer,
                        Index tm, Index tn, Index tk, Index bm, Index bn,
                        Index bk, Index nm, Index nn, Index nk, Index gm,
                        Index gn, Index nm0, Index nn0, bool shard_by_col,
                        bool parallel_pack,
                        bool parallelize_by_sharding_dim_only,
                        DoneCallback done)
        : created_by_thread_id_(std::this_thread::get_id()),
          done_(this, std::move(done)),
          device_(self->m_device),
          lhs_(self->m_leftImpl, self->m_left_nocontract_strides,
               self->m_i_strides, self->m_left_contracting_strides,
               self->m_k_strides),
          rhs_(self->m_rightImpl, self->m_right_nocontract_strides,
               self->m_j_strides, self->m_right_contracting_strides,
               self->m_k_strides),
          buffer_(buffer),
          output_(buffer, tm),
          output_kernel_(self->m_output_kernel),
          tensor_contraction_params_(self->m_tensor_contraction_params),
          num_threads_(num_threads),
          shard_by_col_(shard_by_col),
          parallel_pack_(parallel_pack),
          parallelize_by_sharding_dim_only_(parallelize_by_sharding_dim_only),
          m_(tm),
          n_(tn),
          k_(tk),
          bm_(bm),
          bn_(bn),
          bk_(bk),
          nm_(nm),
          nn_(nn),
          nk_(nk),
          gm_(gm),
          gn_(gn),
          nm0_(nm0),
          nn0_(nn0),
          kernel_(m_, k_, n_, bm_, bk_, bn_),
          num_thread_local_allocations_(0),
          // We reserve 2X more capacity for a thread local values, than the
          // number of threads in the pool to efficiently handle task stealing
          // by threads that are not managed by the pool.
          thread_local_capacity(2 * (parallelize_by_sharding_dim_only_
                                         ? device_.numThreadsInPool()
                                         : 0)),
          // We will use only one of the Lhs/Rhs thread local storage depending
          // on the shard_by_col value and we parallelize by sharding dim ONLY.
          lhs_thread_local_blocks_(shard_by_col_ ? 0 : thread_local_capacity,
                                   {*this}, {*this}),
          rhs_thread_local_blocks_(shard_by_col_ ? thread_local_capacity : 0,
                                   {*this}, {*this}) {
      // These two options are mutually exclusive.
      eigen_assert(!(parallel_pack && parallelize_by_sharding_dim_only));

      for (Index x = 0; x < P; x++) {
        // Normal number of notifications for k slice switch is
        // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only
        // nm_ + nn_ notifications, because they will not receive notifications
        // from preceding kernels.
        state_switch_[x] =
            x == 0
                ? 1
                : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) +
                      (x == P - 1 ? nm_ * nn_ : 0);
        state_packing_ready_[x] =
            parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_);
        state_kernel_[x] = new std::atomic<uint8_t>*[nm_];
        for (Index m = 0; m < nm_; m++) {
          state_kernel_[x][m] = new std::atomic<uint8_t>[nn_];
          // Kernels generally receive 3 notifications (previous kernel + 2
          // packing), but the first slice won't get notifications from previous
          // kernels.
          for (Index n = 0; n < nn_; n++)
            state_kernel_[x][m][n].store(
                (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1),
                std::memory_order_relaxed);
        }
      }

      // Allocate memory for packed rhs/lhs matrices.
      packed_mem_ = kernel_.allocateSlices(            //
          device_,                                     //
          /*num_lhs=*/nm0_,                            //
          /*num_rhs=*/nn0_,                            //
          /*num_slices=*/std::min<Index>(nk_, P - 1),  //
          packed_lhs_, packed_rhs_);

      if (parallelize_by_sharding_dim_only_) {
        const int num_worker_threads = device_.numThreadsInPool();

        if (shard_by_col) {
          can_use_thread_local_packed_ = new std::atomic<bool>[nn_];
          for (int i = 0; i < nn_; ++i)
            can_use_thread_local_packed_[i].store(true,
                                                  std::memory_order_relaxed);

          Index num_blocks = num_worker_threads * gn_;
          thread_local_pre_alocated_mem_ = kernel_.allocateSlices(  //
              device_,                                              //
              /*num_lhs=*/0,                                        //
              /*num_rhs=*/num_blocks,                               //
              /*num_slices=*/1,                                     //
              /*lhs_blocks=*/nullptr, &rhs_thread_local_pre_allocated_);

        } else {
          can_use_thread_local_packed_ = new std::atomic<bool>[nm_];
          for (int i = 0; i < nm_; ++i)
            can_use_thread_local_packed_[i].store(true,
                                                  std::memory_order_relaxed);

          Index num_blocks = num_worker_threads * gm_;
          thread_local_pre_alocated_mem_ = kernel_.allocateSlices(  //
              device_,                                              //
              /*num_lhs=*/num_blocks,                               //
              /*num_rhs=*/0,                                        //
              /*num_slices=*/1, &lhs_thread_local_pre_allocated_,   //
              /*rhs_blocks=*/nullptr);
        }
      }
    }

    ~EvalParallelContext() {
      for (Index x = 0; x < P; x++) {
        for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
        delete[] state_kernel_[x];
      }
      kernel_.deallocate(device_, packed_mem_);
      if (parallelize_by_sharding_dim_only_) {
        kernel_.deallocate(device_, thread_local_pre_alocated_mem_);
        delete[] can_use_thread_local_packed_;
      }
    }

    void run() {
      // Kick off packing of the first slice.
      signal_switch(0, 1);

      // Wait for overall completion.
      //
      // If parallel evaluation is executed in async mode, this is a no-op, and
      // Wait() will return immediately. In synchronous mode it will block the
      // caller thread until it will receive notification from last task.
      //
      // In async mode, last task when completed will call done callback from
      // the same thread, and will delete this context.
      //
      // TODO(dvyukov): This wait can lead to deadlock if contraction is
      // evaluated in synchronous mode. If nthreads contractions are
      // concurrently submitted from worker threads, this wait will block all
      // worker threads and the system will deadlock.
      done_.Wait();
    }

   private:
    std::thread::id created_by_thread_id_;

    // This notification is specialized on the type of DoneCallback and can be
    // blocking or non-blocking.
    EvalParallelNotification<DoneCallback, EvalParallelContext> done_;

    const Device& device_;
    LhsMapper lhs_;
    RhsMapper rhs_;
    Scalar* const buffer_;
    OutputMapper output_;
    OutputKernelType output_kernel_;
    TensorContractionParams tensor_contraction_params_;
    const int num_threads_;
    const bool shard_by_col_;
    const bool parallel_pack_;
    const bool parallelize_by_sharding_dim_only_;
    // Matrix sizes.
    const Index m_;
    const Index n_;
    const Index k_;
    // Block sizes.
    const Index bm_;
    const Index bn_;
    const Index bk_;
    // Number of tasks.
    const Index nm_;
    const Index nn_;
    const Index nk_;
    // Task grain sizes (number of kernels executed per task).
    const Index gm_;
    const Index gn_;
    // Number of blocks (this is different from ni_/nn_ because of task size
    // coarsening).
    const Index nm0_;
    const Index nn0_;
    // Tensor contraction kernel.
    TensorContractionKernel kernel_;

    // Parallelization strategy.
    //
    // Blocks related to the same k block can run in parallel because they write
    // to different output blocks. So we parallelize within k slices, this
    // gives us parallelism level of m x n. Before we can start any kernels
    // related to k-th slice, we need to issue m lhs packing tasks and n rhs
    // packing tasks.
    //
    // However, there is a bottleneck when we are finishing kernels for k-th
    // slice (at the very end there is only 1 runnable kernel). To mitigate this
    // bottleneck we allow kernels from k-th and k+1-th slices to run in
    // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same
    // output block, so they must not run in parallel.
    //
    // This gives us the following dependency graph.
    // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs
    // packing tasks.
    // Kernel (m, n, k) can start when:
    //  - kernel (m, n, k-1) has finished
    //  - lhs packing (m, k) has finished
    //  - rhs packing (n, k) has finished
    // Lhs/rhs packing can start when:
    //  - all k-1 packing has finished (artificially imposed to limit amount of
    //  parallel packing)
    //
    // On top of that we limit runnable tasks to two consecutive k slices.
    // This is done to limit amount of memory we need for packed lhs/rhs
    // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_).
    //
    // state_switch_ tracks when we are ready to switch to the next k slice.
    // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n).
    // These variable are rolling over 3 consecutive k slices: first two we are
    // actively executing + one to track completion of kernels in the second
    // slice.
    static const Index P = 3;

    // Handle to the allocated temporary storage for Lhs/Rhs blocks.
    BlockMemHandle packed_mem_;
    std::vector<LhsBlock> packed_lhs_[P - 1];
    std::vector<RhsBlock> packed_rhs_[P - 1];

    // If we choose to parallelize only by the sharding dimension, each thread
    // will have it's own "thead local" (not a c++ thread local storage) memory
    // for packed_lhs or packed_rhs (shard_by_col = false of true). This memory
    // can't be passed to a kernel that might execute on a different thread.
    //
    // In practice when we are ready to pack memory for the sharding dimension
    // (rhs if shard_by_col==true) of the K-th slice, all kernels for K-1 slice
    // already computed (99% of the time), and we can pack data into the thread
    // local storage, and guarantee that all the kernels will be executed
    // immediately in the same thread. This significantly increases L1 cache hit
    // ratio and reduces pressure on the memory bus.
    //
    // It's still possible that kernel for the K-th slice will be ready before
    // completion of the K-1 kernel, so we have to allocate "global" packed_lhs_
    // and packed_rhs_ to allow kernels to be executed later on a thread
    // different from the thread that was used for packing.

    // Handle for pre-allocated thread local memory buffers.
    BlockMemHandle thread_local_pre_alocated_mem_;

    // Only one of these will be initialized depending on shard_by_col value
    // (the size will be `num_worker_threads * num_grains_in_the_sharding_dim`).
    std::vector<LhsBlock> lhs_thread_local_pre_allocated_;
    std::vector<RhsBlock> rhs_thread_local_pre_allocated_;

    // How many thread local blocks were already allocated.
    std::atomic<int> num_thread_local_allocations_;
    const int thread_local_capacity;

    // We will use pre-allocated Lhs/Rhs blocks defined above, if the number of
    // unique threads in a system is below or equal to the number of threads in
    // a thread pool. We will fallback on dynamic memory allocation after that.

    // ThreadLocalBlocks is a container for Lhs or Rhs thread local buffers. Its
    // size is equal to the grain size in Lhs/Rhs sharding dimension.
    template <typename BlockType>
    class ThreadLocalBlocks {
     public:
      ThreadLocalBlocks() = default;

      ThreadLocalBlocks(BlockType* base, size_t grain_size)
          : is_pre_allocated_(true),
            thread_local_pre_allocated_base_(base),
            grain_size_(grain_size) {}

      ThreadLocalBlocks(BlockMemHandle mem_handle,
                        std::vector<BlockType> blocks)
          : is_pre_allocated_(false),
            mem_handle_(std::move(mem_handle)),
            blocks_(std::move(blocks)) {}

      BlockType& block(int grain_index) {
        eigen_assert(grain_index >= 0);
        eigen_assert(static_cast<size_t>(grain_index) < size());
        return is_pre_allocated_ ? thread_local_pre_allocated_base_[grain_index]
                                 : blocks_[grain_index];
      }

      void Release(EvalParallelContext& ctx) const {
        if (!is_pre_allocated_) {
          ctx.kernel_.deallocate(ctx.device_, mem_handle_);
        }
      }

      size_t size() const {
        return is_pre_allocated_ ? grain_size_ : blocks_.size();
      }

     private:
      bool is_pre_allocated_;

      // Reuse pre-allocated thread local buffers.
      BlockType* thread_local_pre_allocated_base_ = nullptr;
      size_t grain_size_ = 0;

      // These will be initialized only if `is_pre_allocated == false`.
      BlockMemHandle mem_handle_{};
      std::vector<BlockType> blocks_;
    };

    // ThreadLocalBlocksInitialize callable does custom thread local blocks
    // initialization, and will reuse pre-allocated buffers if possible, or will
    // dynamically allocate new memory.
    //
    // Lhs/Rhs blocks might be of the same type, so we have to pass explicitly
    // for what side do we plan to do block allocation.
    template <typename BlockType, bool is_rhs>
    class ThreadLocalBlocksInitialize {
      static constexpr bool kIsLhs =
          !is_rhs && std::is_same<BlockType, LhsBlock>::value;
      static const bool kIsRhs =
          is_rhs && std::is_same<BlockType, RhsBlock>::value;
      static_assert(kIsLhs || kIsRhs, "Unkown block type");

      using Blocks = ThreadLocalBlocks<BlockType>;

     public:
      ThreadLocalBlocksInitialize(EvalParallelContext& ctx)
          : ctx_(ctx),
            num_worker_threads_(ctx_.device_.numThreadsInPool()) {}

      void operator()(Blocks& blocks) {
        const int n = ctx_.num_thread_local_allocations_.fetch_add(
            1, std::memory_order_relaxed);

        if (n >= num_worker_threads_) {
          ThreadLocalBlocksAllocator<is_rhs>::allocate(ctx_, blocks);
        } else {
          ThreadLocalBlocksAllocator<is_rhs>::reuse(ctx_, n, blocks);
        }
      }

     private:
      // NOTE(ezhulenev): Without 'if constexpr' we have to put calls to
      // TensorContractionKernel::allocateSlices into template specializations.
      // Also explicit specializations are not allowed at class scope in C++03,
      // EvalCtx type parameter is just a workaround for that limitation.
      template <bool pack_rhs, typename EvalCtx = EvalParallelContext>
      struct ThreadLocalBlocksAllocator;

      template <typename EvalCtx>
      struct ThreadLocalBlocksAllocator</*pack_rhs=*/true, EvalCtx> {
        static void allocate(EvalCtx& ctx, Blocks& blocks) {
          std::vector<RhsBlock> rhs_blocks;
          BlockMemHandle mem_handle = ctx.kernel_.allocateSlices(
              ctx.device_,
              /*num_lhs=*/0,
              /*num_rhs=*/ctx.gn_,
              /*num_slices=*/1,
              /*lhs_blocks=*/nullptr, /*rhs_blocks=*/&rhs_blocks);

          blocks = ThreadLocalBlocks<RhsBlock>(std::move(mem_handle),
                                               std::move(rhs_blocks));
        }

        static void reuse(EvalCtx& ctx, int index, Blocks& blocks) {
          RhsBlock* ptr = &ctx.rhs_thread_local_pre_allocated_[ctx.gn_ * index];
          blocks = ThreadLocalBlocks<RhsBlock>(ptr, ctx.gn_);
        }
      };

      template <typename EvalCtx>
      struct ThreadLocalBlocksAllocator</*pack_rhs=*/false, EvalCtx> {
        static void allocate(EvalCtx& ctx, Blocks& blocks) {
          std::vector<LhsBlock> lhs_blocks;
          BlockMemHandle mem_handle = ctx.kernel_.allocateSlices(
              ctx.device_,
              /*num_lhs=*/ctx.gm_,
              /*num_rhs=*/0,
              /*num_slices=*/1,
              /*lhs_blocks=*/&lhs_blocks, /*rhs_blocks=*/nullptr);

          blocks = ThreadLocalBlocks<LhsBlock>(std::move(mem_handle),
                                               std::move(lhs_blocks));
        }

        static void reuse(EvalCtx& ctx, int index, Blocks& blocks) {
          LhsBlock* ptr = &ctx.lhs_thread_local_pre_allocated_[ctx.gm_ * index];
          blocks = ThreadLocalBlocks<LhsBlock>(ptr, ctx.gm_);
        }
      };

      EvalParallelContext& ctx_;
      const int num_worker_threads_;
    };

    template <typename BlockType>
    class ThreadLocalBlocksRelease {
     public:
      using Blocks = ThreadLocalBlocks<BlockType>;
      ThreadLocalBlocksRelease(EvalParallelContext& ctx) : ctx_(ctx) {}
      void operator()(Blocks& blocks) { blocks.Release(ctx_); }

     private:
      EvalParallelContext& ctx_;
    };

    // ThreadLocalBlocks initialization callables.
    using ThreadLocalLhsInit =
        ThreadLocalBlocksInitialize<LhsBlock, /*is_rhs=*/false>;
    using ThreadLocalRhsInit =
        ThreadLocalBlocksInitialize<RhsBlock, /*is_rhs=*/true>;

    // ThreadLocalBlocks release callables.
    using ThreadLocalLhsRelease = ThreadLocalBlocksRelease<LhsBlock>;
    using ThreadLocalRhsRelease = ThreadLocalBlocksRelease<RhsBlock>;

    // Thread local containers for Lhs/Rhs block packs. In practice only one of
    // them will be used, depending on the shard_by_col value.
    Eigen::ThreadLocal<ThreadLocalBlocks<LhsBlock>, ThreadLocalLhsInit,
                       ThreadLocalLhsRelease>
        lhs_thread_local_blocks_;
    Eigen::ThreadLocal<ThreadLocalBlocks<RhsBlock>, ThreadLocalRhsInit,
                       ThreadLocalRhsRelease>
        rhs_thread_local_blocks_;

    // After a particular shard for Kth slice missed thread local execution
    // opportunity (K-1 slice didn't complete kernels execution), we can no
    // longer schedule K+1 and following slices in thread local mode, because
    // there is no more guarantee that previous kernels were executed
    // sequentially in the same thread (size is nn_ or nm_).
    std::atomic<bool>* can_use_thread_local_packed_;

    std::atomic<uint8_t>** state_kernel_[P];
    // state_switch_ is frequently modified by worker threads, while other
    // fields are read-only after constructor. Let's move it to a separate cache
    // line to reduce cache-coherency traffic.
    char pad_[128];
    std::atomic<Index> state_packing_ready_[P];
    std::atomic<Index> state_switch_[P];

    LhsBlock& packed_lhs(Index m, Index k, Index m1, bool use_thread_local) {
      if (use_thread_local) {
        eigen_assert(!shard_by_col_);
        ThreadLocalBlocks<LhsBlock>& blocks = lhs_thread_local_blocks_.local();

        Index grain_index = m1 - m * gm_;
        return blocks.block(internal::convert_index<int>(grain_index)); // FIXME better make ThreadLocalBlocks use Eigen::Index?
      } else {
        return packed_lhs_[k % (P - 1)][m1];
      }
    }

    RhsBlock& packed_rhs(Index n, Index k, Index n1, bool use_thread_local) {
      if (use_thread_local) {
        eigen_assert(shard_by_col_);
        ThreadLocalBlocks<RhsBlock>& blocks = rhs_thread_local_blocks_.local();

        Index grain_index = n1 - n * gn_;
        return blocks.block(internal::convert_index<int>(grain_index)); // FIXME better make ThreadLocalBlocks use Eigen::Index?
      } else {
        return packed_rhs_[k % (P - 1)][n1];
      }
    }

    // In following two methods (pack_lhs and pack_rhs), if we know for sure
    // that we'll be able to immediately call a kernel with packed data, and do
    // not submit it to the thread pool, we can use thread local memory for
    // packed data.
    //
    // We can only reliably check it if we are running all kernels in sync mode
    // (parallelize only by sharding dim). If kernel for m==0 (n==0) is ready to
    // run, it's guaranteed that all kernels with larger values of m (n) are
    // also ready, because we execute them in the same order for all K slices.

    void pack_lhs(Index m, Index k) {
      bool use_thread_local = false;

      if (parallelize_by_sharding_dim_only_ && !shard_by_col_ &&
          can_use_thread_local_packed_[m].load(std::memory_order_relaxed)) {
        if (state_kernel_[k % P][m][0].load(std::memory_order_relaxed) == 1) {
          use_thread_local = true;
        } else {
          // If we can't guarantee that all kernels in `k` slice will be
          // executed sequentially in current thread, it's no longer safe to use
          // thread local memory in following slices along the k dimensions.
          eigen_assert(k > 0);
          can_use_thread_local_packed_[m].store(false,
                                                std::memory_order_relaxed);
        }
      }

      const Index mend = m * gm_ + gm(m);
      for (Index m1 = m * gm_; m1 < mend; m1++)
        kernel_.packLhs(&packed_lhs(m, k, m1, use_thread_local),
                        lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));

      if (!parallel_pack_ && shard_by_col_) {
        assert(!use_thread_local);
        signal_packing(k);
      } else {
        signal_switch(k + 1);
        for (Index n = nn_ - 1; n >= 0; n--) {
          bool sync = parallelize_by_sharding_dim_only_ || n == 0;
          signal_kernel(m, n, k, sync, use_thread_local);
        }
      }
    }

    void pack_rhs(Index n, Index k) {
      bool use_thread_local = false;

      if (parallelize_by_sharding_dim_only_ && shard_by_col_ &&
          can_use_thread_local_packed_[n].load(std::memory_order_relaxed)) {
        if (state_kernel_[k % P][0][n].load(std::memory_order_relaxed) == 1) {
          use_thread_local = true;
        } else {
          // If we can't guarantee that all kernels in `k` slice will be
          // executed sequentially in current thread, it's no longer safe to use
          // thread local memory in followig slices along the k dimensions.
          eigen_assert(k > 0);
          can_use_thread_local_packed_[n].store(false,
                                                std::memory_order_relaxed);
        }
      }

      const Index nend = n * gn_ + gn(n);
      for (Index n1 = n * gn_; n1 < nend; n1++) {
        if (!TensorContractionKernel::HasBeta && k == 0) {
          // Zero the output memory in parallel, only if contraction kernel does
          // not support `beta`. Otherwise we will pass beta 0.0 to the first
          // call to the `TensorContractionKernel::invoke()`.
          //
          // On 10000x2x10000 mm zeroing can easily take half of time. Zero (bn
          // x m) row. Safe to do here because all kernels that will write to
          // this memory depend on completion of this task. Note: don't call
          // device_.memset() here. device_.memset() blocks on thread pool
          // worker thread, which can lead to underutilization and deadlocks.
          memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
        }
        kernel_.packRhs(&packed_rhs(n, k, n1, use_thread_local),
                        rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
      }

      if (parallel_pack_ || shard_by_col_) {
        signal_switch(k + 1);
        for (Index m = nm_ - 1; m >= 0; m--) {
          bool sync = parallelize_by_sharding_dim_only_ || m == 0;
          signal_kernel(m, n, k, sync, use_thread_local);
        }
      } else {
        assert(!use_thread_local);
        signal_packing(k);
      }
    }

    void kernel(Index m, Index n, Index k, bool use_thread_local) {
      // Note: order of iteration matters here. Iteration over m is innermost
      // because we want to reuse the same packed rhs in consecutive tasks
      // (rhs fits into L2$ while lhs only into L3$).
      const Index nend = n * gn_ + gn(n);
      const Index mend = m * gm_ + gm(m);

      // NOTE: output = alpha * LHS * RHS + beta * output.
      const Scalar alpha = Scalar(1);
      const Scalar beta =
          (TensorContractionKernel::HasBeta && k == 0) ? Scalar(0) : Scalar(1);

      if (shard_by_col_) {
        for (Index n1 = n * gn_; n1 < nend; n1++) {
          for (Index m1 = m * gm_; m1 < mend; m1++) {
            const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
            kernel_.invoke(
                output_mapper,
                packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
                packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1),
                bk(k), bn(n1), alpha, beta);

            // We are done with the last task for the [m1, n1] block.
            if (k + 1 == nk_) {
              output_kernel_(output_mapper, tensor_contraction_params_,
                             m1 * bm_, n1 * bn_, bm(m1), bn(n1));
            }
          }
        }
      } else {
        for (Index m1 = m * gm_; m1 < mend; m1++)
          for (Index n1 = n * gn_; n1 < nend; n1++) {
            const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
            kernel_.invoke(
                output_mapper,
                packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
                packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1),
                bk(k), bn(n1), alpha, beta);

            // We are done with the last task for the [m1, n1] block.
            if (k + 1 == nk_) {
              output_kernel_(output_mapper, tensor_contraction_params_,
                             m1 * bm_, n1 * bn_, bm(m1), bn(n1));
            }
          }
      }
      signal_kernel(m, n, k + 1, /*sync=*/false, /*use_thread_local=*/false);
      signal_switch(k + 2);
    }

    void signal_packing(Index k) {
      eigen_assert(!parallel_pack_);
      Index s = state_packing_ready_[k % P].fetch_sub(1);
      eigen_assert(s > 0);
      if (s != 1) return;
      state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_;
      enqueue_packing(k, shard_by_col_);
    }

    void signal_kernel(Index m, Index n, Index k, bool sync,
                       bool use_thread_local) {
      std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
      Index s = state->load();
      eigen_assert(s > 0);
      if (s != 1 && state->fetch_sub(1) != 1) {
        eigen_assert(!use_thread_local);
        return;
      }
      state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
      if (sync) {
        kernel(m, n, k, use_thread_local);
      } else {
        eigen_assert(!use_thread_local);
        device_.enqueueNoNotification(
            [=]() { kernel(m, n, k, use_thread_local); });
      }
    }

    void signal_switch(Index k, Index v = 1) {
      Index s = state_switch_[k % P].fetch_sub(v);
      eigen_assert(s >= v);
      if (s != v) return;

      // Ready to switch to the next k slice.
      // Reset counter for the next iteration.
      state_switch_[k % P] =
          (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) +
          nm_ * nn_;
      if (k < nk_) {
        // Issue lhs/rhs packing. Their completion will in turn kick off
        // kernels.
        if (parallel_pack_) {
          enqueue_packing(k, !shard_by_col_);
          enqueue_packing(k, shard_by_col_);
        } else if (shard_by_col_) {
          enqueue_packing(k, false);
        } else {
          enqueue_packing(k, true);
        }

        // Termination handling.
        // Because kernel completion signals k + 2 switch, we need to finish nk
        // + 2 slices without issuing any tasks on nk + 1 slice. So here we
        // pretend that all nk + 1 packing tasks just finish instantly; so that
        // nk + 2 switch only waits for completion of nk kernels.
      } else if (k == nk_) {
        signal_switch(k + 1,
                      parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_));
      } else {
        done_.Notify();
      }
    }

    // Enqueue all rhs/lhs packing for k-th slice.
    void enqueue_packing(Index k, bool rhs) {
      enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs);
    }

    void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) {
      if (end - start == 1) {
        if (rhs)
          pack_rhs(start, k);
        else
          pack_lhs(start, k);
      } else {
        while (end - start > 1) {
          Index mid = (start + end) / 2;
          device_.enqueueNoNotification(
              [=]() { enqueue_packing_helper(mid, end, k, rhs); });
          end = mid;
        }

        // Decide if we want to run first packing task (start == 0) in
        // async mode if we parallelize only by sharding dim:
        // (1) pack_lhs and pack_rhs call signal_switch before completing
        //     all calls to signal_kernel, which in sync mode might lead
        //     to the execution of the first kernel of the k+1 slice, before
        //     completing a call to the last kernel of the k slice.
        // (2) all pack tasks for sharded dim must be executed in a thread
        //     pool to get pre-allocated thead local buffers.
        bool pack_async =
          (start == 0) &&
          (parallelize_by_sharding_dim_only_&& shard_by_col_ == rhs) &&
          (k > 0 || std::this_thread::get_id() == created_by_thread_id_);

        if (pack_async) {
          device_.enqueueNoNotification(
              [=]() { enqueue_packing_helper(start, end, k, rhs); });
        } else {
          enqueue_packing_helper(start, end, k, rhs);
        }
      }
    }

    // Block sizes with accounting for potentially incomplete last block.
    Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; }
    Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; }
    Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; }
    // Task grain sizes accounting for potentially incomplete last task.
    Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
    Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }

    EvalParallelContext(const EvalParallelContext&) = delete;
    void operator=(const EvalParallelContext&) = delete;
  };

  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
            bool rhs_inner_dim_reordered, int Alignment>
  using SyncEvalParallelContext =
      EvalParallelContext<NoCallback, lhs_inner_dim_contiguous,
                          rhs_inner_dim_contiguous, rhs_inner_dim_reordered,
                          Alignment>;

  // ------------------------------------------------------------------------ //

  // EvalShardedByInnerDimContext orchestrates sync/async contraction
  // evaluation, when we shard by inner dimension. When it is executed in
  // asynchronous mode, it owns all the shared state that might be accessible by
  // block processing tasks.

  template <typename DoneCallback>
  struct EvalShardedByInnerDimContext {
    EvalShardedByInnerDimContext(const Self* self, int num_threads,
                                 Scalar* result_buffer,
                                 Index m_size, Index n_size, Index k_size,
                                 DoneCallback done_callback)
        : evaluator(self),
          m_lhs_inner_dim_contiguous(evaluator->m_lhs_inner_dim_contiguous),
          m_rhs_inner_dim_contiguous(evaluator->m_rhs_inner_dim_contiguous),
          m_rhs_inner_dim_reordered(evaluator->m_rhs_inner_dim_reordered),
          result(result_buffer),
          m(m_size),
          n(n_size),
          k(k_size),
          done(std::move(done_callback)),
          buffer_size_bytes(m * n * sizeof(Scalar)),
          block_size(blockSize(k, num_threads)),
          num_blocks(divup<Index>(k, block_size)),
          num_pending_blocks(internal::convert_index<int>(num_blocks)),
          l0_ranges(divup<Index>(num_blocks, l0_size)),
          l0_state(l0_ranges),
          block_buffers(num_blocks) {
      // Keep count of pending gemm tasks for each l0 range.
      for (int i = 0; i < l0_ranges; ++i) {
        const Index num_pending_tasks = actualRangeSize(l0_ranges, l0_size, i);
        l0_state.emplace_back(internal::convert_index<int>(num_pending_tasks));
      }

      // Allocate temporary buffers for each block.
      for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) {
        Scalar* buf = block_idx == 0
                          ? result
                          : static_cast<Scalar*>(evaluator->m_device.allocate(
                                buffer_size_bytes));
        block_buffers.emplace_back(buf);
      }
    }

    ~EvalShardedByInnerDimContext() {
      for (Index i = 1; i < num_blocks; ++i) {
        evaluator->m_device.deallocate(block_buffers[i]);
      }
    }

    template <int Alignment>
    void run() {
      Barrier barrier(internal::convert_index<int>(num_blocks));
      eval<Alignment>(barrier, 0, num_blocks);
      barrier.Wait();

      // Aggregate partial sums from l0 ranges.
      aggregateL0Blocks<Alignment>();

      // Apply output kernel.
      applyOutputKernel();
    }

    template <int Alignment>
    void runAsync() {
      evalAsync<Alignment>(0, num_blocks);
    }

   private:
    // The underlying GEMM kernel assumes that k is a multiple of
    // the packet size and subtle breakage occurs if this is violated.
    static const Index packet_size = internal::packet_traits<RhsScalar>::size;

    const Self* evaluator;  // TensorContraction evaluator

    // These fields required fromTENSOR_CONTRACTION_DISPATCH macro.
    bool m_lhs_inner_dim_contiguous;
    bool m_rhs_inner_dim_contiguous;
    bool m_rhs_inner_dim_reordered;

    Scalar* result;

    Index m;
    Index n;
    Index k;

    DoneCallback done;

    // ----------------------------------------------------------------------//
    // Algorithm parameters.

    // We will compute partial results into the buffers of this size.
    Index buffer_size_bytes;

    Index block_size;
    Index num_blocks;

    // Keep track of pending tasks when evaluate in async mode.
    std::atomic<int> num_pending_blocks;

    // We compute partial gemm results in parallel, and to get the final result
    // we need to add them all together. For the large number of threads (>= 48)
    // this adds a very expensive sequential step at the end.
    //
    // We split the [0, num_blocks) into small ranges, and when a task for the
    // block finishes its partial gemm computation, it checks if it was the last
    // gemm in the range, and if so, it will add all blocks of the range.
    //
    // After all tasks done, we need to add only these pre-aggregated blocks.

    // For now we use just a single level of ranges to compute pre-aggregated
    // partial sums, but in general we can use more layers to compute tree
    // aggregation in parallel and reduce the size of the sequential step.
    //
    // TODO(ezhulenev): Add multilevel tree aggregation? Probably will make
    // sense only if number of threads >= ~128?
    static const Index l0_size = 4;
    Index l0_ranges;

    // Keep count of pending gemm tasks for each l0 range.
    MaxSizeVector<std::atomic<int>> l0_state;  // [0, l0_ranges)

    // Buffers allocated for each temporary block computation.
    MaxSizeVector<Scalar*> block_buffers;  // [0, num_blocks)

    template <int Alignment>
    void processBlock(Index block_idx, Index begin, Index end) {
      Scalar* buf = block_buffers[block_idx];

      TENSOR_CONTRACTION_DISPATCH(
          evaluator->template evalGemmPartialWithoutOutputKernel, Alignment,
          (buf, begin, end,
           /*num_threads=*/internal::convert_index<int>(num_blocks)));

      // Check if it was the last task in l0 range.
      const Index l0_index = block_idx / l0_size;
      const int v = l0_state[l0_index].fetch_sub(1);
      eigen_assert(v >= 1);

      // If we processed the last block of the range, we can aggregate all
      // partial results into the first block of the range.
      if (v == 1) {
        const Index rng_size = actualRangeSize(l0_ranges, l0_size, l0_index);
        const Index dst_block_idx = l0_index * l0_size;

        if (rng_size == l0_size) {
          addAllToBuffer<Alignment>(
              m * n,
              /*src_buf0=*/block_buffers[dst_block_idx + 1],
              /*src_buf1=*/block_buffers[dst_block_idx + 2],
              /*src_buf2=*/block_buffers[dst_block_idx + 3],
              /*dst_buf= */ block_buffers[dst_block_idx]);
        } else {
          // Aggregate blocks of potentially incomplete last range.
          for (int i = 1; i < rng_size; ++i) {
            addToBuffer<Alignment>(m * n,
                                   /*src_buf=*/block_buffers[dst_block_idx + i],
                                   /*dst_buf=*/block_buffers[dst_block_idx]);
          }
        }
      }
    }

    // Aggregate partial sums from l0 ranges.
    template <int Alignment>
    void aggregateL0Blocks() const {
      Index l0_index = 1;

      for (; l0_index + 2 < l0_ranges; l0_index += 3) {
        addAllToBuffer<Alignment>(
            m * n,
            /*src_buf0=*/block_buffers[(l0_index + 0) * l0_size],
            /*src_buf1=*/block_buffers[(l0_index + 1) * l0_size],
            /*src_buf2=*/block_buffers[(l0_index + 2) * l0_size],
            /*dst_buf= */ block_buffers[0]);
      }

      for (; l0_index < l0_ranges; ++l0_index) {
        addToBuffer<Alignment>(m * n, block_buffers[l0_index * l0_size],
                               block_buffers[0]);
      }
    }

    void applyOutputKernel() const {
      typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
      evaluator->m_output_kernel(
          OutputMapper(result, m), evaluator->m_tensor_contraction_params,
          static_cast<Eigen::Index>(0), static_cast<Eigen::Index>(0), m, n);
    }

    // Compute block size with accounting for potentially incomplete last block.
    Index actualBlockSize(Index block_idx) const {
      return block_idx + 1 < num_blocks
                 ? block_size
                 : k + block_size - block_size * num_blocks;
    };

    // Compute range size with accounting for potentially incomplete last range.
    Index actualRangeSize(Index num_ranges, Index range_size,
                          Index range_idx) const {
      eigen_assert(range_idx < num_ranges);
      return range_idx + 1 < num_ranges
                 ? range_size
                 : num_blocks + range_size - range_size * num_ranges;
    };

    template <int Alignment>
    EIGEN_STRONG_INLINE static void addToBuffer(size_t n, const Scalar* src_buf,
                                                Scalar* tgt_buf) {
      const int output_packet_size =
          internal::unpacket_traits<PacketReturnType>::size;
      size_t i = 0;
      const size_t num_packets = n / output_packet_size;
      for (; i < output_packet_size * num_packets; i += output_packet_size) {
        const PacketReturnType src_val =
            internal::pload<PacketReturnType>(src_buf + i);
        const PacketReturnType tgt_val =
            internal::ploadt<PacketReturnType, Alignment>(tgt_buf + i);
        const PacketReturnType sum = internal::padd(src_val, tgt_val);
        internal::pstoret<Scalar, PacketReturnType, Alignment>(tgt_buf + i,
                                                               sum);
      }
      for (; i < n; ++i) {
        tgt_buf[i] += src_buf[i];
      }
    }

    template <int Alignment>
    EIGEN_STRONG_INLINE static void addAllToBuffer(size_t n,
                                                   const Scalar* src_buf0,
                                                   const Scalar* src_buf1,
                                                   const Scalar* src_buf2,
                                                   Scalar* dst_buf) {
      using ::Eigen::internal::padd;
      using ::Eigen::internal::pload;
      using ::Eigen::internal::ploadt;
      using ::Eigen::internal::pstoret;

      const int output_packet_size =
          internal::unpacket_traits<PacketReturnType>::size;

      size_t i = 0;
      const size_t num_packets = n / output_packet_size;
      for (; i < output_packet_size * num_packets; i += output_packet_size) {
        const auto src_val0 = pload<PacketReturnType>(src_buf0 + i);
        const auto src_val1 = pload<PacketReturnType>(src_buf1 + i);
        const auto src_val2 = pload<PacketReturnType>(src_buf2 + i);

        const auto dst_val = ploadt<PacketReturnType, Alignment>(dst_buf + i);
        const auto sum =
            padd(padd(dst_val, src_val0), padd(src_val1, src_val2));

        pstoret<Scalar, PacketReturnType, Alignment>(dst_buf + i, sum);
      }
      for (; i < n; ++i) {
        dst_buf[i] += src_buf0[i] + src_buf1[i] + src_buf2[i];
      }
    }

    template <int Alignment>
    void eval(Barrier& barrier, Index start_block_idx, Index end_block_idx) {
      while (end_block_idx - start_block_idx > 1) {
        Index mid_block_idx = (start_block_idx + end_block_idx) / 2;
        evaluator->m_device.enqueueNoNotification(
            [this, &barrier, mid_block_idx, end_block_idx]() {
              eval<Alignment>(barrier, mid_block_idx, end_block_idx);
            });
        end_block_idx = mid_block_idx;
      }

      Index block_idx = start_block_idx;
      Index block_start = block_idx * block_size;
      Index block_end = block_start + actualBlockSize(block_idx);

      processBlock<Alignment>(block_idx, block_start, block_end);
      barrier.Notify();
    }

    template <int Alignment>
    void evalAsync(Index start_block_idx, Index end_block_idx) {
      while (end_block_idx - start_block_idx > 1) {
        Index mid_block_idx = (start_block_idx + end_block_idx) / 2;
        evaluator->m_device.enqueueNoNotification(
            [this, mid_block_idx, end_block_idx]() {
              evalAsync<Alignment>(mid_block_idx, end_block_idx);
            });
        end_block_idx = mid_block_idx;
      }

      Index block_idx = start_block_idx;

      Index block_start = block_idx * block_size;
      Index block_end = block_start + actualBlockSize(block_idx);

      processBlock<Alignment>(block_idx, block_start, block_end);

      int v = num_pending_blocks.fetch_sub(1);
      eigen_assert(v >= 1);

      if (v == 1) {
        // Aggregate partial sums from l0 ranges.
        aggregateL0Blocks<Alignment>();

        // Apply output kernel.
        applyOutputKernel();

        // NOTE: If we call `done` callback before deleting this (context),
        // it might deallocate Self* pointer captured by context, and we'll
        // fail in destructor trying to deallocate temporary buffers.

        // Move done call back from context before it will be destructed.
        DoneCallback done_copy = std::move(done);

        // We are confident that we are the last one who touches context.
        delete this;

        // Now safely call the done callback.
        done_copy();
      }
    }

    // Cost model doesn't capture well the cost associated with constructing
    // tensor contraction mappers and computing loop bounds in gemm_pack_lhs
    // and gemm_pack_rhs, so we specify minimum desired block size.
    static Index blockSize(Index k, int num_threads) {
      const auto round_up = [=](Index index) -> Index {
        const Index kmultiple = packet_size <= 8 ? 8 : packet_size;
        return divup<Index>(index, kmultiple) * kmultiple;
      };

      const Index target_block_size = round_up(divup<Index>(k, num_threads));
      const Index desired_min_block_size = 12 * packet_size;

      return numext::mini<Index>(
          k, numext::maxi<Index>(desired_min_block_size, target_block_size));
    }

    EvalShardedByInnerDimContext(const EvalShardedByInnerDimContext&) = delete;
    void operator=(const EvalShardedByInnerDimContext&) = delete;
  };

  // ------------------------------------------------------------------------ //

  // Below are the function used by evalProductImpl heuristics, trying to select
  // optimcal parameters for parallelization algorithm.

  // Decide whether we want to shard m x n contraction by columns or by rows.
  static bool shardByCol(Index m, Index n, Index num_threads) {
    // Note: we are comparing both n and m against Traits::nr, it is not
    // a mistake. We are trying to figure out how both n and m will fit into
    // the main sharding dimension.

    // Sharding by column is the default
    // ... unless there is enough data for vectorization over rows
    if (m / num_threads >= Traits::nr &&
        // and not enough data for vectorization over columns
        (n / num_threads < Traits::nr ||
         // ... or barely enough data for vectorization over columns,
         // but it is not evenly dividable across threads
         (n / num_threads < 4 * Traits::nr &&
          (n % (num_threads * Traits::nr)) != 0 &&
          // ... and it is evenly dividable across threads for rows
          ((m % (num_threads * Traits::nr)) == 0 ||
           // .. or it is not evenly dividable for both dimensions but
           // there is much more data over rows so that corner effects are
           // mitigated.
           (m / n >= 6)))))
      return false;
    // Wait, or if matrices are just substantially prolonged over the other
    // dimension.
    if (n / num_threads < 16 * Traits::nr && m > n * 32) return false;
    return true;
  }

  Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn,
                 int num_threads, bool shard_by_col) const {
    Index gm = 1;
    Index gm1 = 1;
    Index nm0 = divup(m, bm);
    Index nm1 = nm0;
    for (;;) {
      // Find the next candidate for m grain size. It needs to result in
      // different number of blocks. E.g. if we have 10 kernels, we want to try
      // 5 and 10, but not 6, 7, 8 and 9.
      while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++;
      if (gm1 > nm0) break;
      // Check the candidate.
      int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads,
                           shard_by_col);
      if (res < 0) break;
      nm1 = divup(nm0, gm1);
      if (res == 0) continue;
      // Commit new grain size.
      gm = gm1;
    }
    return gm;
  }

  Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
                 int num_threads, bool shard_by_col) const {
    Index gn = 1;
    Index gn1 = 1;
    Index nn0 = divup(n, bn);
    Index nn1 = nn0;
    for (;;) {
      while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++;
      if (gn1 > nn0) break;
      int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads,
                           shard_by_col);
      if (res < 0) break;
      nn1 = divup(nn0, gn1);
      if (res == 0) continue;
      gn = gn1;
    }
    return gn;
  }

  // checkGrain checks whether grain (gm, gn) is suitable and is better than
  // (oldgm, oldgn).
  int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
                 Index gn, Index oldgm, Index oldgn, int num_threads,
                 bool shard_by_col) const {
    const TensorOpCost cost =
        contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true);
    double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize(
        static_cast<double>(bm) * gm * bn * gn, cost);
    // If the task is too small, then we agree on it regardless of anything
    // else. Otherwise synchronization overheads will dominate.
    if (taskSize < 1) return 1;
    // If it is too large, then we reject it and all larger tasks.
    if (taskSize > 2) return -1;
    // Now we are in presumably good task size range.
    // The main deciding factor here is parallelism. Consider that we have 12
    // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes.
    // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4
    // of cores will be busy). While grain size 3 gives us 4 tasks, which gives
    // us parallelism of 1 (we can load all cores).
    Index nm0 = divup(m, bm);
    Index nn0 = divup(n, bn);
    Index new_tasks = divup(nm0, gm) * divup(nn0, gn);
    double new_parallelism = static_cast<double>(new_tasks) /
                             (divup<int>(new_tasks, num_threads) * num_threads);
    Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn);
    double old_parallelism = static_cast<double>(old_tasks) /
                             (divup<int>(old_tasks, num_threads) * num_threads);
    if (new_parallelism > old_parallelism || new_parallelism == 1) return 1;
    return 0;
  }

  TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk,
                               bool shard_by_col, bool prepacked) const {
    const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size,
                                          PacketType<RhsScalar, Device>::size);
    const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
    const double kd = static_cast<double>(bk);
    double compute_bandwidth = computeBandwidth(false, bm, bn, bk);
    // Computations.
    TensorOpCost cost = TensorOpCost(0, 0, kd * compute_bandwidth, true, packed_size);
    // Output stores.
    cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
    if (prepacked) {
      // Packing and kernels are executed in different tasks. When we calculate
      // task grain size we look only at kernel cost assuming that kernel
      // is more expensive than packing.
      return cost;
    }
    // Lhs/rhs loads + computations.
    TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n);
    TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m);
    // Lhs packing memory cost does not contribute considerably to overall
    // execution time because lhs is prefetched early and accessed sequentially.
    if (shard_by_col)
      lhsCost.dropMemoryCost();
    else
      rhsCost.dropMemoryCost();
    return cost + lhsCost + rhsCost;
  }

  // Decide whether we want to shard m x k x n contraction over the inner
  // (contraction) dimension (k).
  static bool shardByInnerDim(Index m, Index n, Index k, int num_threads,
                              int num_threads_by_k) {
    std::ptrdiff_t bufsize = m * n * sizeof(Scalar);
    bool shard_by_k = false;
    if (n == 1 ||                // If mat*vec or...
        num_threads_by_k < 2 ||  // running single threaded or...
        num_threads_by_k <
            num_threads ||  // sharding by k gives less parallelism or...
        bufsize > l3CacheSize() / num_threads_by_k ||  // need more buffer space
        // than L3 cache or...
        k / num_threads_by_k < 2 * Traits::nr) {  // k per thread is tiny.
      shard_by_k = false;
    } else if (numext::maxi(m, n) / num_threads <
                   Traits::nr ||  // both other dimensions are tiny or...
               // k per thread is not small and...
               (k / num_threads_by_k > 8 * Traits::nr &&
                // one of the outer dimensions is tiny or sharding by k offers
                // more parallelism.
                (numext::mini(m, n) < 2 * Traits::nr ||
                 num_threads_by_k > num_threads))) {
      shard_by_k = true;
    }
    return shard_by_k;
  }

  TensorOpCost contractionCostPerInnerDim(Index m, Index n, Index k) const {
    // Compute cost.
    const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
    TensorOpCost cost(0, 0, (computeBandwidth(true, m, n, k) * m) * n, true, output_packet_size);
    // Output stores.
    cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
    TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * m;
    TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * n;
    // Since the inner gemm kernel is always sharded by column, the lhs
    // load cost is negligible.
    lhsCost.dropMemoryCost();
    return cost + lhsCost + rhsCost;
  }

  int numThreadsInnerDim(Index m, Index n, Index k) const {
    const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
    TensorOpCost cost = contractionCostPerInnerDim(m, n, k);
    double total_parallel_cost =
        TensorCostModel<ThreadPoolDevice>::totalCost(k, cost);
    // Cost of reduction step accumulating the m*n per-thread buffers into the
    // result.
    double reduction_cost = TensorCostModel<ThreadPoolDevice>::totalCost(
        m * n, TensorOpCost(2, 1, 1, true, output_packet_size));
    int num_threads = 1;
    double min_cost = total_parallel_cost;
    double kPerThreadOverHead = 3000;
    double kFixedOverHead = 100000;
    for (int nt = 2; nt <= this->m_device.numThreads(); nt += 2) {
      double sequential_cost =
          kFixedOverHead + nt * (reduction_cost + kPerThreadOverHead);
      double parallel_cost = total_parallel_cost / nt + sequential_cost;
      if (parallel_cost < min_cost) {
        num_threads = nt;
        min_cost = parallel_cost;
      }
    }
    return num_threads;
  }

  double computeBandwidth(bool shard_by_col, Index bm, Index bn,
                          Index bk) const {
    // Peak VFMA bandwidth is 0.5. However if we have not enough data for
    // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
    // experimentally.
    double computeBandwidth =
        bk == 1 ? 4.0
                : (shard_by_col ? bn : bm) < Traits::nr ||
                          (shard_by_col ? bm : bn) < Traits::mr
                      ? 2.0
                      : 0.5;
#ifndef EIGEN_VECTORIZE_FMA
    // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
    // However for MULPS/ADDPS we have dependent sequence of 2 such
    // instructions,
    // so overall bandwidth is 1.0.
    if (computeBandwidth == 0.5) computeBandwidth = 1.0;
#endif
    return computeBandwidth;
  }

};

} // end namespace Eigen

#endif  // EIGEN_USE_THREADS
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H