1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*****************************************************************
* TensorTensorContractionsycl.h
*
* \brief:
* TensorContractionsycl
*
*****************************************************************/
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H
namespace Eigen {
template <typename Index, typename LhsScalar, typename RhsScalar,bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered> struct LaunchSyclKernels;
template<typename Indices, typename LeftArgType, typename RightArgType>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, const Eigen::SyclDevice> :
public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, const Eigen::SyclDevice> > {
typedef const Eigen::SyclDevice Device;
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
enum {
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
};
// Most of the code is assuming that both input tensors are ColMajor. If the
// inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
// If we want to compute A * B = C, where A is LHS and B is RHS, the code
// will pretend B is LHS and A is RHS.
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
static const int LDims =
internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
static const int RDims =
internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
static const int ContractDims = internal::array_size<Indices>::value;
typedef array<Index, LDims> left_dim_mapper_t;
typedef array<Index, RDims> right_dim_mapper_t;
typedef array<Index, ContractDims> contract_t;
typedef array<Index, LDims - ContractDims> left_nocontract_t;
typedef array<Index, RDims - ContractDims> right_nocontract_t;
static const int NumDims = LDims + RDims - 2 * ContractDims;
typedef DSizes<Index, NumDims> Dimensions;
// typedefs needed in evalTo
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
typedef typename LeftEvaluator::Dimensions LeftDimensions;
typedef typename RightEvaluator::Dimensions RightDimensions;
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
Base(op, device) {}
// We need to redefine this method to make nvcc happy
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
this->m_leftImpl.evalSubExprsIfNeeded(NULL);
this->m_rightImpl.evalSubExprsIfNeeded(NULL);
if (data) {
evalTo(data);
return false;
} else {
this->m_result = static_cast<Scalar*>(this->m_device.allocate(this->dimensions().TotalSize() * sizeof(Scalar)));
evalTo(this->m_result);
return true;
}
}
const Eigen::SyclDevice& device() const {return this->m_device;}
void evalTo(Scalar* buffer) const {
// Here is the result
if (this->m_lhs_inner_dim_contiguous) {
if (this->m_rhs_inner_dim_contiguous) {
if (this->m_rhs_inner_dim_reordered) {
evalTyped<true, true, true, Unaligned>(buffer);
}
else {
evalTyped<true, true, false, Unaligned>(buffer);
}
}
else {
if (this->m_rhs_inner_dim_reordered) {
evalTyped<true, false, true, Unaligned>(buffer);
}
else {
evalTyped<true, false, false, Unaligned>(buffer);
}
}
}
else {
if (this->m_rhs_inner_dim_contiguous) {
if (this->m_rhs_inner_dim_reordered) {
evalTyped<false, true, true, Unaligned>(buffer);
}
else {
evalTyped<false, true, false, Unaligned>(buffer);
}
}
else {
if (this->m_rhs_inner_dim_reordered) {
evalTyped<false, false, true, Unaligned>(buffer);
}
else {
evalTyped<false, false, false, Unaligned>(buffer);
}
}
}
}
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
void evalTyped(Scalar* buffer) const {
// columns in left side, rows in right side
const Index k = this->m_k_size;
EIGEN_UNUSED_VARIABLE(k)
// rows in left side
const Index m = this->m_i_size;
// columns in right side
const Index n = this->m_j_size;
// zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
LaunchSyclKernels<Index, LhsScalar, RhsScalar,lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered>::Run(*this, buffer, m, n, k,
this->m_k_strides, this->m_left_contracting_strides, this->m_right_contracting_strides,
this->m_i_strides, this->m_j_strides, this->m_left_nocontract_strides, this->m_right_nocontract_strides);
}
// required by sycl to construct the expr on the device. Returns original left_impl
const TensorEvaluator<LeftArgType, Device>& left_impl() const {
return choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(), this->m_leftImpl, this->m_rightImpl);
}
// required by sycl to construct the expr on the device. Returns original right_impl
const TensorEvaluator<RightArgType, Device>& right_impl() const {
return choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(), this->m_rightImpl, this->m_leftImpl);
}
};
template <typename HostExpr, typename OutScalar, typename LhsScalar, typename RhsScalar, typename LHSFunctorExpr, typename RHSFunctorExpr, typename LhsLocalAcc, typename RhsLocalAcc, typename OutAccessor, typename Index, typename ContractT, typename LeftNocontractT,
typename RightNocontractT, bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered,
typename HostExpr::Index TileSizeDimM, typename HostExpr::Index TileSizeDimN,typename HostExpr::Index TileSizeDimK, typename HostExpr::Index WorkLoadPerThreadM,typename HostExpr::Index WorkLoadPerThreadN,
typename HostExpr::Index LocalThreadSizeM, typename HostExpr::Index LocalThreadSizeN, typename HostExpr::Index LoadPerThreadLhs, typename HostExpr::Index LoadPerThreadRhs, typename LHSTupleType, typename RHSTupleType, typename Device> struct KernelConstructor{
typedef typename Eigen::internal::traits<HostExpr>::_LhsNested LHSHostExpr;
typedef typename Eigen::internal::traits<HostExpr>::_RhsNested RHSHostExpr;
typedef typename Eigen::TensorSycl::internal::createPlaceHolderExpression<LHSHostExpr>::Type LHSPlaceHolderExpr;
typedef typename Eigen::TensorSycl::internal::createPlaceHolderExpression<RHSHostExpr>::Type RHSPlaceHolderExpr;
LHSFunctorExpr lhs_functors;
RHSFunctorExpr rhs_functors;
LhsLocalAcc localLhs;
RhsLocalAcc localRhs;
OutAccessor out_res;
size_t out_offset;
Index roundUpK, M, N, K;
ContractT m_k_strides, m_left_contracting_strides, m_right_contracting_strides;
LeftNocontractT m_i_strides, m_left_nocontract_strides;
RightNocontractT m_j_strides, m_right_nocontract_strides;
LHSTupleType left_tuple_of_accessors;
RHSTupleType right_tuple_of_accessors;
Device dev;
KernelConstructor(LHSFunctorExpr lhs_functors_, RHSFunctorExpr rhs_functors_, LhsLocalAcc localLhs_, RhsLocalAcc localRhs_, OutAccessor out_res_, size_t out_offset_,
Index roundUpK_, Index M_, Index N_, Index K_, ContractT m_k_strides_, ContractT m_left_contracting_strides_,
ContractT m_right_contracting_strides_, LeftNocontractT m_i_strides_, RightNocontractT m_j_strides_,
LeftNocontractT m_left_nocontract_strides_, RightNocontractT m_right_nocontract_strides_, LHSTupleType left_tuple_of_accessors_, RHSTupleType right_tuple_of_accessors_, Device dev_)
:lhs_functors(lhs_functors_), rhs_functors(rhs_functors_), localLhs(localLhs_), localRhs(localRhs_), out_res(out_res_),
out_offset(out_offset_), roundUpK(roundUpK_), M(M_), N(N_), K(K_),
m_k_strides(m_k_strides_), m_left_contracting_strides(m_left_contracting_strides_),
m_right_contracting_strides(m_right_contracting_strides_),
m_i_strides(m_i_strides_), m_left_nocontract_strides(m_left_nocontract_strides_),
m_j_strides(m_j_strides_), m_right_nocontract_strides(m_right_nocontract_strides_),
left_tuple_of_accessors(left_tuple_of_accessors_), right_tuple_of_accessors(right_tuple_of_accessors_), dev(dev_){}
void operator()(cl::sycl::nd_item<2> itemID) {
typedef typename Eigen::TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
typedef typename Eigen::TensorSycl::internal::ConvertToDeviceExpression<LHSHostExpr>::Type LHSDevExpr;
typedef typename Eigen::TensorSycl::internal::ConvertToDeviceExpression<RHSHostExpr>::Type RHSDevExpr;
auto lhs_dev_expr = Eigen::TensorSycl::internal::createDeviceExpression<LHSDevExpr, LHSPlaceHolderExpr>(lhs_functors, left_tuple_of_accessors);
auto rhs_dev_expr = Eigen::TensorSycl::internal::createDeviceExpression<RHSDevExpr, RHSPlaceHolderExpr>(rhs_functors, right_tuple_of_accessors);
typedef decltype(lhs_dev_expr.expr) LeftArgType;
typedef decltype(rhs_dev_expr.expr) RightArgType;
typedef typename internal::conditional<static_cast<int>(Eigen::internal::traits<DevExpr>::Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
typedef typename internal::conditional<static_cast<int>(Eigen::internal::traits<DevExpr>::Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
LeftEvaluator, LeftNocontractT,
ContractT, 1,
lhs_inner_dim_contiguous,
false, Unaligned, MakeGlobalPointer> LhsMapper;
typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
RightEvaluator, RightNocontractT,
ContractT, 1,
rhs_inner_dim_contiguous,
rhs_inner_dim_reordered, Unaligned, MakeGlobalPointer> RhsMapper;
// initialize data mappers must happen inside the kernel for device eval
LhsMapper lhs(LeftEvaluator(choose(Cond<static_cast<int>(Eigen::internal::traits<DevExpr>::Layout) == static_cast<int>(ColMajor)>(),
lhs_dev_expr.expr, rhs_dev_expr.expr), dev), m_left_nocontract_strides, m_i_strides, m_left_contracting_strides, m_k_strides);
RhsMapper rhs(RightEvaluator(choose(Cond<static_cast<int>(Eigen::internal::traits<DevExpr>::Layout) == static_cast<int>(ColMajor)>(),
rhs_dev_expr.expr, lhs_dev_expr.expr),dev), m_right_nocontract_strides, m_j_strides, m_right_contracting_strides, m_k_strides);
auto out_ptr = ConvertToActualTypeSycl(OutScalar, out_res);
// Matmul Kernel
// Thread identifiers
const Index mLocalThreadId = itemID.get_local(0); // Local ID row
const Index nLocalThreadId = itemID.get_local(1); // Local ID col
const Index mGroupId = itemID.get_group(0); // Work-group ID row
const Index nGroupId = itemID.get_group(1); // Work-group ID localCol
const Index linearLocalThreadId = nLocalThreadId*LocalThreadSizeM + mLocalThreadId; // linear local thread ID
// Allocate register space
LhsScalar privateLhs;
RhsScalar privateRhs[WorkLoadPerThreadN];
OutScalar privateRes[WorkLoadPerThreadM][WorkLoadPerThreadN];
// Initialise the privateResumulation registers
for (Index wLPTM=0; wLPTM<WorkLoadPerThreadM; wLPTM++) {
for (Index wLPTN=0; wLPTN<WorkLoadPerThreadN; wLPTN++) {
privateRes[wLPTM][wLPTN] = static_cast<OutScalar>(0);
}
}
// Tile Lhs
for (Index lPTL=0; lPTL<LoadPerThreadLhs; lPTL++) {
Index localLhsLinearId = lPTL*LocalThreadSizeN*LocalThreadSizeM + linearLocalThreadId;
Index localLhsRow = localLhsLinearId% TileSizeDimM;
Index localLhsCol = localLhsLinearId/TileSizeDimM;
// Load the value (wide vector load)
Index GlobalLhsColId = TileSizeDimK*0 + localLhsCol;
localLhs[0 + ((localLhsCol*TileSizeDimM + localLhsRow)*2)] =((GlobalLhsColId < K)&& (mGroupId*(TileSizeDimM)+ localLhsRow <M))? lhs(mGroupId*(TileSizeDimM) + localLhsRow, GlobalLhsColId):static_cast<OutScalar>(0);
}
// Tile Rhs
for (Index lPTR=0; lPTR<LoadPerThreadRhs; lPTR++) {
Index localRhsLinearId = lPTR*LocalThreadSizeN*LocalThreadSizeM + linearLocalThreadId;
Index localRhsRow = localRhsLinearId% TileSizeDimN;
Index localRhsCol = localRhsLinearId/TileSizeDimN;
// Load the value (wide vector load)
Index GlobalRhsRowId = TileSizeDimK*0 + localRhsCol;
localRhs[0 + ((localRhsCol*TileSizeDimN + localRhsRow) *2)] = ((GlobalRhsRowId < K)&& ((nGroupId*(TileSizeDimN) + localRhsRow)< N))? rhs(GlobalRhsRowId, nGroupId*(TileSizeDimN) + localRhsRow): static_cast<OutScalar>(0);
}
// Loop over all tiles
const Index numTiles = roundUpK/TileSizeDimK;
Index firstHalf=0;
do {
// Synchronise
itemID.barrier(cl::sycl::access::fence_space::local_space);
// Load the next tile of Lhs and Rhs into local memory
Index nextHalf = firstHalf + 1;
if (nextHalf < numTiles) {
// Tile A
for (Index lPTL=0; lPTL<LoadPerThreadLhs; lPTL++) {
Index localLhsLinearId = lPTL*LocalThreadSizeN*LocalThreadSizeM + linearLocalThreadId;
Index localLhsRow = localLhsLinearId% TileSizeDimM;
Index localLhsCol = localLhsLinearId/TileSizeDimM;
// global K id
Index GlobalLhsColId = TileSizeDimK*nextHalf + localLhsCol;
// Store the loaded value into local memory
localLhs[(nextHalf%2) + ((localLhsCol*TileSizeDimM + localLhsRow) *2)] = ((GlobalLhsColId < K)&& (mGroupId*(TileSizeDimM)+ localLhsRow <M))? lhs(mGroupId*(TileSizeDimM) + localLhsRow, GlobalLhsColId): static_cast<OutScalar>(0);
}
// Tile B
for (Index lPTR=0; lPTR<LoadPerThreadRhs; lPTR++) {
Index localRhsLinearId = lPTR*LocalThreadSizeN*LocalThreadSizeM + linearLocalThreadId;
Index localRhsRow = localRhsLinearId% TileSizeDimN;
Index localRhsCol = localRhsLinearId/TileSizeDimN;
// Load the value (wide vector load)
Index GlobalRhsRowId = TileSizeDimK*nextHalf + localRhsCol;
// Store the loaded vector into local memory
localRhs[(nextHalf%2) +((localRhsCol*TileSizeDimN + localRhsRow)*2)] = ((GlobalRhsRowId < K)&& ((nGroupId*(TileSizeDimN) + localRhsRow)< N))? rhs(GlobalRhsRowId, nGroupId*(TileSizeDimN) + localRhsRow):static_cast<OutScalar>(0);
}
}
// Loop over the values of a single tile
for (Index k=0; k<TileSizeDimK; k++) {
// Cache the values of localRhs in registers
for (Index wLPTN=0; wLPTN<WorkLoadPerThreadN; wLPTN++) {
Index localRhsCol = nLocalThreadId + wLPTN*LocalThreadSizeN;
privateRhs[wLPTN] = localRhs[(firstHalf%2) +((k*TileSizeDimN + localRhsCol)*2)];
}
// Perform the computation
for (Index wLPTM=0; wLPTM<WorkLoadPerThreadM; wLPTM++) {
Index localLhsRow = mLocalThreadId + wLPTM*LocalThreadSizeM;
privateLhs = localLhs[(firstHalf%2)+ ((k*TileSizeDimM + localLhsRow)*2)];
for (Index wLPTN=0; wLPTN<WorkLoadPerThreadN; wLPTN++) {
privateRes[wLPTM][wLPTN] += privateLhs * privateRhs[wLPTN];
}
}
}
// Next tile
firstHalf++;
} while (firstHalf<numTiles);
// Store the final results in C
for (Index wLPTM=0; wLPTM<WorkLoadPerThreadM; wLPTM++) {
Index globalRow = mGroupId*TileSizeDimM + mLocalThreadId + wLPTM*LocalThreadSizeM;
if (globalRow< M){
for (Index wLPTN=0; wLPTN<WorkLoadPerThreadN; wLPTN++) {
Index globalCol = nGroupId*TileSizeDimN + nLocalThreadId + wLPTN*LocalThreadSizeN;
if(globalCol<N)
out_ptr[globalCol*M + globalRow +ConvertToActualSyclOffset(OutScalar, out_offset)] = privateRes[wLPTM][wLPTN];
}
}
}
}
};
template <typename Index, typename LhsScalar, typename RhsScalar, bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered> struct LaunchSyclKernels {
static const Index TileSizeDimM = 32ul; // Tile size for dimension M
static const Index TileSizeDimN = 32ul; // Tile size for dimension N
static const Index TileSizeDimK = 16ul; // Tile size for dimension K
static const Index WorkLoadPerThreadM = 4ul; // Work load per thread in dimension M
static const Index WorkLoadPerThreadN = 4ul; // work load per thread in dimension N
static const Index LocalThreadSizeM = (TileSizeDimM/WorkLoadPerThreadM); // Local thread size for the first dimension (M here)
static const Index LocalThreadSizeN = (TileSizeDimN/WorkLoadPerThreadN); // Local thread size for the second dimension (N here)
static const Index LoadPerThreadLhs = ((TileSizeDimK*WorkLoadPerThreadM*WorkLoadPerThreadN)/(TileSizeDimN)); // workload per thread for Lhs expression
static const Index LoadPerThreadRhs = ((TileSizeDimK*WorkLoadPerThreadM*WorkLoadPerThreadN)/(TileSizeDimM)); // workload per thread for Rhs expression
// RoundUp function to make sure that the global threadId is divisable by local threadId
static Index RoundUp(Index x, Index y) {
return ((((x) + (y) - 1) / (y))*(y));
}
template< typename Self, typename OutScalar, typename ContractT, typename LeftNocontractT, typename RightNocontractT>
static void Run(const Self& self, OutScalar* buffer, Index M, Index N, Index K,
ContractT m_k_strides, ContractT m_left_contracting_strides, ContractT m_right_contracting_strides,
LeftNocontractT m_i_strides, RightNocontractT m_j_strides, LeftNocontractT m_left_nocontract_strides, RightNocontractT m_right_nocontract_strides){
typedef typename Self::XprType HostExpr;
typedef typename Eigen::internal::traits<HostExpr>::_LhsNested LHSHostExpr;
typedef typename Eigen::internal::traits<HostExpr>::_RhsNested RHSHostExpr;
typedef TensorEvaluator<LHSHostExpr, const Eigen::SyclDevice> OrigLHSExpr;
typedef TensorEvaluator<RHSHostExpr, const Eigen::SyclDevice> OrigRHSExpr;
typedef Eigen::TensorSycl::internal::FunctorExtractor<OrigLHSExpr> LHSFunctorExpr;
typedef Eigen::TensorSycl::internal::FunctorExtractor<OrigRHSExpr> RHSFunctorExpr;
// extract lhs functor list
LHSFunctorExpr lhs_functors = Eigen::TensorSycl::internal::extractFunctors(self.left_impl());
// extract rhs functor list
RHSFunctorExpr rhs_functors = Eigen::TensorSycl::internal::extractFunctors(self.right_impl());
Index roundUpK = RoundUp(K, TileSizeDimK);
Index roundUpM = RoundUp(M, TileSizeDimM);
Index roundUpN = RoundUp(N, TileSizeDimN);
ptrdiff_t out_offset = self.device().get_offset(buffer);
self.device().sycl_queue().submit([&](cl::sycl::handler &cgh) {
/// work-around for gcc bug
typedef decltype(Eigen::TensorSycl::internal::createTupleOfAccessors<OrigLHSExpr>(cgh, self.left_impl())) LHSTupleType;
/// work-around for gcc bug
typedef decltype(Eigen::TensorSycl::internal::createTupleOfAccessors<OrigRHSExpr>(cgh, self.right_impl())) RHSTupleType;
// create lhs tuple of accessors
LHSTupleType left_tuple_of_accessors = Eigen::TensorSycl::internal::createTupleOfAccessors<OrigLHSExpr>(cgh, self.left_impl());
// create rhs tuple of accessors
RHSTupleType right_tuple_of_accessors = Eigen::TensorSycl::internal::createTupleOfAccessors<OrigRHSExpr>(cgh, self.right_impl());
// Local memory for elements of Lhs
typedef cl::sycl::accessor<LhsScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> LhsLocalAcc;
LhsLocalAcc localLhs(cl::sycl::range<1>(2* TileSizeDimM * TileSizeDimK), cgh);
// Local memory for elements of Rhs
typedef cl::sycl::accessor<RhsScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> RhsLocalAcc;
RhsLocalAcc localRhs(cl::sycl::range<1>(2* TileSizeDimK * TileSizeDimN), cgh);
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::global_buffer> OutAccessor;
//OutScalar memory
OutAccessor out_res= self.device(). template get_sycl_accessor<cl::sycl::access::mode::read_write>(cgh, buffer);
// sycl parallel for
cgh.parallel_for(cl::sycl::nd_range<2>(cl::sycl::range<2>(roundUpM/WorkLoadPerThreadM, roundUpN/WorkLoadPerThreadN),
cl::sycl::range<2>(LocalThreadSizeM, LocalThreadSizeN)),
KernelConstructor<HostExpr, OutScalar, LhsScalar, RhsScalar, LHSFunctorExpr, RHSFunctorExpr, LhsLocalAcc, RhsLocalAcc, OutAccessor, Index, ContractT, LeftNocontractT,
RightNocontractT, lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, TileSizeDimM, TileSizeDimN, TileSizeDimK,
WorkLoadPerThreadM, WorkLoadPerThreadN, LocalThreadSizeM, LocalThreadSizeN, LoadPerThreadLhs, LoadPerThreadRhs, LHSTupleType, RHSTupleType, Eigen::SyclKernelDevice>(lhs_functors, rhs_functors,
localLhs, localRhs, out_res, out_offset, roundUpK, M, N, K, m_k_strides, m_left_contracting_strides, m_right_contracting_strides,m_i_strides, m_j_strides,
m_left_nocontract_strides,m_right_nocontract_strides, left_tuple_of_accessors, right_tuple_of_accessors, Eigen::SyclKernelDevice()));
});
self.device().asynchronousExec();
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H
|