aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h
blob: 38c06aba20905571e93c9abc94531a2dd18ddce9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Andy Davis <andydavis@google.com>
// Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H
#define EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H

namespace Eigen {
namespace internal {

namespace {

// Helper template to choose between ColMajor and RowMajor values.
template <int Layout>
struct cond;

template <>
struct cond<ColMajor> {
  template <typename T>
  EIGEN_STRONG_INLINE const T& operator()(const T& col,
                                          const T& /*row*/) const {
    return col;
  }
};

template <>
struct cond<RowMajor> {
  template <typename T>
  EIGEN_STRONG_INLINE const T& operator()(const T& /*col*/,
                                          const T& row) const {
    return row;
  }
};

}  // namespace

/**
 * \enum TensorBlockShapeType
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor block shape type.
 *
 * Tensor block shape type defines what are the shape preference for the blocks
 * extracted from the larger tensor.
 *
 * Example:
 *
 * We want to extract blocks of 100 elements from the large 100x100 tensor:
 *  - tensor: 100x100
 *  - target_block_size: 100
 *
 * TensorBlockShapeType:
 *  - kUniformAllDims: 100 blocks of size 10x10
 *  - kSkewedInnerDims: 100 blocks of size 100x1 (or 1x100 depending on a column
 *                      or row major layout)
 */
enum TensorBlockShapeType {
  kUniformAllDims,
  kSkewedInnerDims
};

struct TensorOpResourceRequirements {
  TensorBlockShapeType block_shape;
  Index block_total_size;
  // TODO(andydavis) Add 'target_num_threads' to support communication of
  // thread-resource requirements. This will allow ops deep in the
  // expression tree (like reductions) to communicate resources
  // requirements based on local state (like the total number of reductions
  // to be computed).
  TensorOpResourceRequirements(TensorBlockShapeType shape,
                               const Index size)
      : block_shape(shape), block_total_size(size) {}
};

// Tries to merge multiple resource requirements.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MergeResourceRequirements(
    const std::vector<TensorOpResourceRequirements>& resources,
    TensorBlockShapeType* block_shape, Index* block_total_size) {
  if (resources.empty()) {
    return;
  }
  // TODO(andydavis) Implement different policies (i.e. revert to a default
  // policy if block shapes/sizes conflict).
  *block_shape = resources[0].block_shape;
  *block_total_size = resources[0].block_total_size;
  for (std::vector<TensorOpResourceRequirements>::size_type i = 1; i < resources.size(); ++i) {
    if (resources[i].block_shape == kSkewedInnerDims &&
        *block_shape != kSkewedInnerDims) {
      *block_shape = kSkewedInnerDims;
    }
    *block_total_size =
        numext::maxi(*block_total_size, resources[i].block_total_size);
  }
}

/**
 * \class TensorBlock
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor block class.
 *
 * This class represents a tensor block specified by the index of the
 * first block coefficient, and the size of the block in each dimension.
 */
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
class TensorBlock {
 public:
  typedef DSizes<StorageIndex, NumDims> Dimensions;

  TensorBlock(const StorageIndex first_coeff_index, const Dimensions& block_sizes,
              const Dimensions& block_strides, const Dimensions& tensor_strides,
              Scalar* data)
      : m_first_coeff_index(first_coeff_index),
        m_block_sizes(block_sizes),
        m_block_strides(block_strides),
        m_tensor_strides(tensor_strides),
        m_data(data) {}

  StorageIndex first_coeff_index() const { return m_first_coeff_index; }

  const Dimensions& block_sizes() const { return m_block_sizes; }

  const Dimensions& block_strides() const { return m_block_strides; }

  const Dimensions& tensor_strides() const { return m_tensor_strides; }

  Scalar* data() { return m_data; }

  const Scalar* data() const { return m_data; }

 private:
  StorageIndex m_first_coeff_index;
  Dimensions m_block_sizes;
  Dimensions m_block_strides;
  Dimensions m_tensor_strides;
  Scalar* m_data;  // Not owned.
};

template <typename Scalar, typename StorageIndex>
struct TensorBlockCopyOp {

  typedef typename packet_traits<Scalar>::type Packet;
  enum {
    Vectorizable = internal::packet_traits<Scalar>::Vectorizable,
    PacketSize   = internal::packet_traits<Scalar>::size
  };

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const StorageIndex num_coeff_to_copy, const StorageIndex dst_index,
      const StorageIndex dst_stride, Scalar* EIGEN_RESTRICT dst_data,
      const StorageIndex src_index, const StorageIndex src_stride,
      const Scalar* EIGEN_RESTRICT src_data) {
    const Scalar* src = &src_data[src_index];
    Scalar* dst = &dst_data[dst_index];

    if (!Vectorizable) {
      for (Index i = 0; i < num_coeff_to_copy; ++i) {
        dst[i * dst_stride] = src[i * src_stride];
      }
      return;
    }

    if (src_stride == 1) {
      const StorageIndex vectorized_size = (num_coeff_to_copy / PacketSize) * PacketSize;
      if (dst_stride == 1) {
        // LINEAR
        for (StorageIndex i = 0; i < vectorized_size; i += PacketSize) {
          Packet p = internal::ploadu<Packet>(src + i);
          internal::pstoreu<Scalar, Packet>(dst + i, p);
        }
        for (StorageIndex i = vectorized_size; i < num_coeff_to_copy; ++i) {
          dst[i] = src[i];
        }
      } else {
        // SCATTER
        for (StorageIndex i = 0; i < vectorized_size; i += PacketSize) {
          Packet p = internal::ploadu<Packet>(src + i);
          internal::pscatter<Scalar, Packet>(dst + i * dst_stride, p, dst_stride);
        }
        for (StorageIndex i = vectorized_size; i < num_coeff_to_copy; ++i) {
          dst[i * dst_stride] = src[i];
        }
      }
    } else if (src_stride == 0) {
      const StorageIndex vectorized_size = (num_coeff_to_copy / PacketSize) * PacketSize;
      if (dst_stride == 1) {
        // LINEAR
        for (StorageIndex i = 0; i < vectorized_size; i += PacketSize) {
          Packet p = internal::pload1<Packet>(src);
          internal::pstoreu<Scalar, Packet>(dst + i, p);
        }
        for (StorageIndex i = vectorized_size; i < num_coeff_to_copy; ++i) {
          dst[i] = *src;
        }
      } else {
        // SCATTER
        for (StorageIndex i = 0; i < vectorized_size; i += PacketSize) {
          Packet p = internal::pload1<Packet>(src);
          internal::pscatter<Scalar, Packet>(dst + i * dst_stride, p, dst_stride);
        }
        for (StorageIndex i = vectorized_size; i < num_coeff_to_copy; ++i) {
          dst[i * dst_stride] = *src;
        }
      }
    } else {
      if (dst_stride == 1) {
        // GATHER
        const StorageIndex vectorized_size = (num_coeff_to_copy / PacketSize) * PacketSize;
        for (StorageIndex i = 0; i < vectorized_size; i += PacketSize) {
          Packet p = internal::pgather<Scalar, Packet>(src + i * src_stride, src_stride);
          internal::pstoreu<Scalar, Packet>(dst + i, p);
        }
        for (StorageIndex i = vectorized_size; i < num_coeff_to_copy; ++i) {
          dst[i] = src[i * src_stride];
        }
      } else {
        // RANDOM
        for (StorageIndex i = 0; i < num_coeff_to_copy; ++i) {
          dst[i * dst_stride] = src[i * src_stride];
        }
      }
    }
  }
};

/**
 * \class TensorBlockIO
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor block IO class.
 *
 * This class is responsible for copying data between a tensor and a tensor
 * block.
 */
template <typename Scalar, typename StorageIndex, int NumDims, int Layout,
          bool BlockRead>
class TensorBlockIO {
 public:
  typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
  typedef TensorBlockCopyOp<Scalar, StorageIndex> BlockCopyOp;

 protected:
  typedef array<StorageIndex, NumDims> Dimensions;

  struct BlockIteratorState {
    StorageIndex input_stride;
    StorageIndex output_stride;
    StorageIndex input_span;
    StorageIndex output_span;
    StorageIndex size;
    StorageIndex count;
    BlockIteratorState()
        : input_stride(0),
          output_stride(0),
          input_span(0),
          output_span(0),
          size(0),
          count(0) {}
  };

  // Compute how many inner dimensions it's allowed to squeeze when doing IO
  // between a tensor and a block. It's safe to squeeze inner dimensions, only
  // if they are not reordered.
  static int NumSqueezableInnerDims(const Dimensions& tensor_to_block_dim_map) {
    int num_squeezable_dims = 0;
    if (Layout == ColMajor) {
      for (int i = 0; i < NumDims; ++i) {
        if (tensor_to_block_dim_map[i] == i) num_squeezable_dims++;
        else break;
      }
    } else {
      for (int i = NumDims - 1; i >= 0; --i) {
        if (tensor_to_block_dim_map[i] == i) num_squeezable_dims++;
        else break;
      }
    }
    return num_squeezable_dims;
  }

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Copy(
      const Block& block, StorageIndex first_coeff_index,
      const Dimensions& tensor_to_block_dim_map,
      const Dimensions& tensor_strides,
      const Scalar* src_data,
      Scalar* dst_data) {
    // Do not squeeze reordered inner dimensions.
    int num_squeezable_dims = NumSqueezableInnerDims(tensor_to_block_dim_map);

    // Find the innermost tensor dimension whose size is not 1. This is the
    // effective inner dim. If all dimensions are of size 1, then fallback to
    // using the actual innermost dim to avoid out-of-bound access.
    StorageIndex num_size_one_inner_dims = 0;
    for (int i = 0; i < num_squeezable_dims; ++i) {
      const int dim = cond<Layout>()(i, NumDims - i - 1);
      if (block.block_sizes()[tensor_to_block_dim_map[dim]] != 1) {
        num_size_one_inner_dims = i;
        break;
      }
    }

    // Calculate strides and dimensions.
    const StorageIndex tensor_stride1_dim = cond<Layout>()(
        num_size_one_inner_dims, NumDims - num_size_one_inner_dims - 1);
    const StorageIndex block_dim_for_tensor_stride1_dim =
        NumDims == 0 ? 1 : tensor_to_block_dim_map[tensor_stride1_dim];
    StorageIndex block_inner_dim_size =
        NumDims == 0 ? 1
                     : block.block_sizes()[block_dim_for_tensor_stride1_dim];

    // Squeeze multiple inner dims into one for larger inner dim size.
    for (Index i = num_size_one_inner_dims + 1; i < num_squeezable_dims; ++i) {
      const Index dim = cond<Layout>()(i, NumDims - i - 1);
      const StorageIndex block_stride =
          block.block_strides()[tensor_to_block_dim_map[dim]];
      if (block_inner_dim_size == block_stride &&
          block_stride == tensor_strides[dim]) {
        block_inner_dim_size *=
            block.block_sizes()[tensor_to_block_dim_map[dim]];
        ++num_size_one_inner_dims;
      } else {
        break;
      }
    }

    StorageIndex inputIndex;
    StorageIndex outputIndex;
    StorageIndex input_stride;
    StorageIndex output_stride;

    // Setup strides to read/write along the tensor's stride1 dimension.
    if (BlockRead) {
      inputIndex = first_coeff_index;
      outputIndex = 0;
      input_stride = NumDims == 0 ? 1 : tensor_strides[tensor_stride1_dim];
      output_stride =
          NumDims == 0
              ? 1
              : block.block_strides()[block_dim_for_tensor_stride1_dim];
    } else {
      inputIndex = 0;
      outputIndex = first_coeff_index;
      input_stride =
          NumDims == 0
              ? 1
              : block.block_strides()[block_dim_for_tensor_stride1_dim];
      output_stride = NumDims == 0 ? 1 : tensor_strides[tensor_stride1_dim];
    }

    const int at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1;
    array<BlockIteratorState, at_least_1_dim> block_iter_state;

    // Initialize block iterator state. Squeeze away any dimension of size 1.
    Index num_squeezed_dims = 0;
    for (Index i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
      const Index dim = cond<Layout>()(i + 1, NumDims - i - 2);
      const StorageIndex size = block.block_sizes()[tensor_to_block_dim_map[dim]];
      if (size == 1) {
        continue;
      }
      block_iter_state[num_squeezed_dims].size = size;
      if (BlockRead) {
        block_iter_state[num_squeezed_dims].input_stride = tensor_strides[dim];
        block_iter_state[num_squeezed_dims].output_stride =
            block.block_strides()[tensor_to_block_dim_map[dim]];
      } else {
        block_iter_state[num_squeezed_dims].input_stride =
            block.block_strides()[tensor_to_block_dim_map[dim]];
        block_iter_state[num_squeezed_dims].output_stride = tensor_strides[dim];
      }
      block_iter_state[num_squeezed_dims].input_span =
          block_iter_state[num_squeezed_dims].input_stride *
          (block_iter_state[num_squeezed_dims].size - 1);
      block_iter_state[num_squeezed_dims].output_span =
          block_iter_state[num_squeezed_dims].output_stride *
          (block_iter_state[num_squeezed_dims].size - 1);
      ++num_squeezed_dims;
    }

    // Iterate copying data from src to dst.
    const StorageIndex block_total_size =
        NumDims == 0 ? 1 : block.block_sizes().TotalSize();
    for (StorageIndex i = 0; i < block_total_size; i += block_inner_dim_size) {
      BlockCopyOp::Run(block_inner_dim_size, outputIndex, output_stride,
                       dst_data, inputIndex, input_stride, src_data);
      // Update index.
      for (int j = 0; j < num_squeezed_dims; ++j) {
        if (++block_iter_state[j].count < block_iter_state[j].size) {
          inputIndex += block_iter_state[j].input_stride;
          outputIndex += block_iter_state[j].output_stride;
          break;
        }
        block_iter_state[j].count = 0;
        inputIndex -= block_iter_state[j].input_span;
        outputIndex -= block_iter_state[j].output_span;
      }
    }
  }
};

/**
 * \class TensorBlockReader
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor block reader class.
 *
 * This class is responsible for reading a tensor block.
 *
 */
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
class TensorBlockReader : public TensorBlockIO<Scalar, StorageIndex, NumDims,
                                               Layout, /*BlockRead=*/true> {
 public:
  typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
  typedef TensorBlockIO<Scalar, StorageIndex, NumDims, Layout, /*BlockRead=*/true> Base;

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      Block* block, const Scalar* src_data) {
    array<StorageIndex, NumDims> tensor_to_block_dim_map;
    for (int i = 0; i < NumDims; ++i) {
      tensor_to_block_dim_map[i] = i;
    }
    Base::Copy(*block, block->first_coeff_index(), tensor_to_block_dim_map,
               block->tensor_strides(), src_data, block->data());
  }

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      Block* block, StorageIndex first_coeff_index,
      const array<StorageIndex, NumDims>& tensor_to_block_dim_map,
      const array<StorageIndex, NumDims>& tensor_strides, const Scalar* src_data) {
    Base::Copy(*block, first_coeff_index, tensor_to_block_dim_map,
               tensor_strides, src_data, block->data());
  }
};

/**
 * \class TensorBlockWriter
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor block writer class.
 *
 * This class is responsible for writing a tensor block.
 *
 */
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
class TensorBlockWriter : public TensorBlockIO<Scalar, StorageIndex, NumDims,
                                               Layout, /*BlockRead=*/false> {
 public:
  typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
  typedef TensorBlockIO<Scalar, StorageIndex, NumDims, Layout, /*BlockRead=*/false> Base;

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const Block& block, Scalar* dst_data) {
    array<StorageIndex, NumDims> tensor_to_block_dim_map;
    for (int i = 0; i < NumDims; ++i) {
      tensor_to_block_dim_map[i] = i;
    }
    Base::Copy(block, block.first_coeff_index(), tensor_to_block_dim_map,
               block.tensor_strides(), block.data(), dst_data);
  }

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const Block& block, StorageIndex first_coeff_index,
      const array<StorageIndex, NumDims>& tensor_to_block_dim_map,
      const array<StorageIndex, NumDims>& tensor_strides, Scalar* dst_data) {
    Base::Copy(block, first_coeff_index, tensor_to_block_dim_map,
               tensor_strides, block.data(), dst_data);
  }
};

/**
 * \class TensorBlockCwiseUnaryOp
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Carries out a cwise binary op on a number of coefficients.
 *
 * This class reads strided input from the argument, and writes the
 * result of the cwise unary op to the strided output array.
 *
 */
struct TensorBlockCwiseUnaryOp {
  template <typename StorageIndex, typename UnaryFunctor,
            typename OutputScalar, typename InputScalar>
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const UnaryFunctor& functor, const StorageIndex num_coeff,
      const StorageIndex output_index, const StorageIndex output_stride,
      OutputScalar* output_data, const StorageIndex input_index,
      const StorageIndex input_stride, const InputScalar* input_data) {
    typedef const Eigen::Array<InputScalar, Dynamic, 1> Input;
    typedef Eigen::Array<OutputScalar, Dynamic, 1> Output;

    typedef Eigen::Map<Input, 0, InnerStride<> > InputMap;
    typedef Eigen::Map<Output, 0, InnerStride<> > OutputMap;

    const InputScalar* input_base = &input_data[input_index];
    OutputScalar* output_base = &output_data[output_index];

    const InputMap input(input_base, num_coeff, InnerStride<>(input_stride));
    OutputMap output(output_base, num_coeff, InnerStride<>(output_stride));

    output = Eigen::CwiseUnaryOp<UnaryFunctor, InputMap>(input, functor);
  }
};

/**
 * \class TensorBlockCwiseUnaryIO
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor block IO class for carrying out cwise unary ops.
 *
 * This class carries out the unary op on given blocks.
 */
template <typename UnaryFunctor, typename StorageIndex, typename OutputScalar,
          int NumDims, int Layout>
struct TensorBlockCwiseUnaryIO {
  typedef typename internal::TensorBlock<OutputScalar, StorageIndex, NumDims,
                                         Layout>::Dimensions Dimensions;

  struct BlockIteratorState {
    StorageIndex output_stride, output_span;
    StorageIndex input_stride, input_span;
    StorageIndex size, count;
  };

  template <typename InputScalar>
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const UnaryFunctor& functor, const Dimensions& block_sizes,
      const Dimensions& block_strides, OutputScalar* output_data,
      const array<StorageIndex, NumDims>& input_strides,
      const InputScalar* input_data) {
    // Find the innermost dimension whose size is not 1. This is the effective
    // inner dim. If all dimensions are of size 1, fallback to using the actual
    // innermost dim to avoid out-of-bound access.
    int num_size_one_inner_dims = 0;
    for (int i = 0; i < NumDims; ++i) {
      const int dim = cond<Layout>()(i, NumDims - i - 1);
      if (block_sizes[dim] != 1) {
        num_size_one_inner_dims = i;
        break;
      }
    }
    // Calculate strides and dimensions.
    const int inner_dim =
        NumDims == 0 ? 1
                     : cond<Layout>()(num_size_one_inner_dims,
                                      NumDims - num_size_one_inner_dims - 1);
    StorageIndex inner_dim_size = NumDims == 0 ? 1 : block_sizes[inner_dim];
    for (int i = num_size_one_inner_dims + 1; i < NumDims; ++i) {
      const int dim = cond<Layout>()(i, NumDims - i - 1);
      // Merge multiple inner dims into one for larger inner dim size (i.e.
      // fewer calls to TensorBlockCwiseUnaryOp::Run()).
      if (inner_dim_size == block_strides[dim] &&
          block_strides[dim] == input_strides[dim]) {
        inner_dim_size *= block_sizes[dim];
        ++num_size_one_inner_dims;
      } else {
        break;
      }
    }

    StorageIndex output_index = 0, input_index = 0;

    const StorageIndex output_stride =
        NumDims == 0 ? 1 : block_strides[inner_dim];
    const StorageIndex input_stride =
        NumDims == 0 ? 1 : input_strides[inner_dim];

    const int at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1;
    array<BlockIteratorState, at_least_1_dim> block_iter_state;

    // Initialize block iterator state. Squeeze away any dimension of size 1.
    int num_squeezed_dims = 0;
    for (int i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
      const int dim = cond<Layout>()(i + 1, NumDims - i - 2);
      const StorageIndex size = block_sizes[dim];
      if (size == 1) {
        continue;
      }
      BlockIteratorState& state = block_iter_state[num_squeezed_dims];
      state.output_stride = block_strides[dim];
      state.input_stride = input_strides[dim];
      state.size = size;
      state.output_span = state.output_stride * (size - 1);
      state.input_span = state.input_stride * (size - 1);
      state.count = 0;
      ++num_squeezed_dims;
    }

    // Compute cwise unary op.
    const StorageIndex block_total_size =
        NumDims == 0 ? 1 : block_sizes.TotalSize();
    for (StorageIndex i = 0; i < block_total_size; i += inner_dim_size) {
      TensorBlockCwiseUnaryOp::Run(functor, inner_dim_size, output_index,
                                   output_stride, output_data, input_index,
                                   input_stride, input_data);
      // Update index.
      for (int j = 0; j < num_squeezed_dims; ++j) {
        BlockIteratorState& state = block_iter_state[j];
        if (++state.count < state.size) {
          output_index += state.output_stride;
          input_index += state.input_stride;
          break;
        }
        state.count = 0;
        output_index -= state.output_span;
        input_index -= state.input_span;
      }
    }
  }
};

/**
 * \class TensorBlockCwiseBinaryOp
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Carries out a cwise binary op on a number of coefficients.
 *
 * This class reads strided inputs from left and right operands, and writes the
 * result of the cwise binary op to the strided output array.
 *
 */
struct TensorBlockCwiseBinaryOp {
  template <typename StorageIndex, typename BinaryFunctor, typename OutputScalar,
            typename LeftScalar, typename RightScalar>
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const BinaryFunctor& functor, const StorageIndex num_coeff,
      const StorageIndex output_index, const StorageIndex output_stride,
      OutputScalar* output_data, const StorageIndex left_index,
      const StorageIndex left_stride, const LeftScalar* left_data,
      const StorageIndex right_index, const StorageIndex right_stride,
      const RightScalar* right_data) {
    typedef const Array<LeftScalar, Dynamic, 1> Lhs;
    typedef const Array<RightScalar, Dynamic, 1> Rhs;
    typedef Array<OutputScalar, Dynamic, 1> Out;

    typedef Map<Lhs, 0, InnerStride<> > LhsMap;
    typedef Map<Rhs, 0, InnerStride<> > RhsMap;
    typedef Map<Out, 0, InnerStride<> > OutMap;

    const LeftScalar* lhs_base = &left_data[left_index];
    const RightScalar* rhs_base = &right_data[right_index];
    OutputScalar* out_base = &output_data[output_index];

    const LhsMap lhs(lhs_base, num_coeff, InnerStride<>(left_stride));
    const RhsMap rhs(rhs_base, num_coeff, InnerStride<>(right_stride));
    OutMap out(out_base, num_coeff, InnerStride<>(output_stride));

    out = CwiseBinaryOp<BinaryFunctor, LhsMap, RhsMap>(lhs, rhs, functor);
  }
};

/**
 * \class TensorBlockCwiseBinaryIO
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor block IO class for carrying out cwise binary ops.
 *
 * This class carries out the binary op on given blocks.
 *
 */
template <typename BinaryFunctor, typename StorageIndex, typename OutputScalar,
          int NumDims, int Layout>
struct TensorBlockCwiseBinaryIO {
  typedef typename TensorBlock<OutputScalar, StorageIndex, NumDims, Layout>::Dimensions Dimensions;

  struct BlockIteratorState {
    StorageIndex output_stride, output_span;
    StorageIndex left_stride, left_span;
    StorageIndex right_stride, right_span;
    StorageIndex size, count;
  };

  template <typename LeftScalar, typename RightScalar>
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const BinaryFunctor& functor, const Dimensions& block_sizes,
      const Dimensions& block_strides, OutputScalar* output_data,
      const array<StorageIndex, NumDims>& left_strides,
      const LeftScalar* left_data,
      const array<StorageIndex, NumDims>& right_strides,
      const RightScalar* right_data) {
    // Find the innermost dimension whose size is not 1. This is the effective
    // inner dim. If all dimensions are of size 1, fallback to using the actual
    // innermost dim to avoid out-of-bound access.
    int num_size_one_inner_dims = 0;
    for (int i = 0; i < NumDims; ++i) {
      const int dim = cond<Layout>()(i, NumDims - i - 1);
      if (block_sizes[dim] != 1) {
        num_size_one_inner_dims = i;
        break;
      }
    }
    // Calculate strides and dimensions.
    const int inner_dim =
        NumDims == 0 ? 1
                     : cond<Layout>()(num_size_one_inner_dims,
                                      NumDims - num_size_one_inner_dims - 1);
    StorageIndex inner_dim_size = NumDims == 0 ? 1 : block_sizes[inner_dim];
    for (int i = num_size_one_inner_dims + 1; i < NumDims; ++i) {
      const int dim = cond<Layout>()(i, NumDims - i - 1);
      // Merge multiple inner dims into one for larger inner dim size (i.e.
      // fewer calls to TensorBlockCwiseBinaryOp::Run()).
      if (inner_dim_size == block_strides[dim] &&
          block_strides[dim] == left_strides[dim] &&
          block_strides[dim] == right_strides[dim]) {
        inner_dim_size *= block_sizes[dim];
        ++num_size_one_inner_dims;
      } else {
        break;
      }
    }

    StorageIndex output_index = 0, left_index = 0, right_index = 0;
    const StorageIndex output_stride =
        NumDims == 0 ? 1 : block_strides[inner_dim];
    const StorageIndex left_stride = NumDims == 0 ? 1 : left_strides[inner_dim];
    const StorageIndex right_stride =
        NumDims == 0 ? 1 : right_strides[inner_dim];

    const int at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1;
    array<BlockIteratorState, at_least_1_dim> block_iter_state;

    // Initialize block iterator state. Squeeze away any dimension of size 1.
    int num_squeezed_dims = 0;
    for (int i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
      const int dim = cond<Layout>()(i + 1, NumDims - i - 2);
      const StorageIndex size = block_sizes[dim];
      if (size == 1) {
        continue;
      }
      BlockIteratorState& state = block_iter_state[num_squeezed_dims];
      state.output_stride = block_strides[dim];
      state.left_stride = left_strides[dim];
      state.right_stride = right_strides[dim];
      state.size = size;
      state.output_span = state.output_stride * (size - 1);
      state.left_span = state.left_stride * (size - 1);
      state.right_span = state.right_stride * (size - 1);
      state.count = 0;
      ++num_squeezed_dims;
    }

    // Compute cwise binary op.
    const StorageIndex block_total_size =
        NumDims == 0 ? 1 : block_sizes.TotalSize();
    for (StorageIndex i = 0; i < block_total_size; i += inner_dim_size) {
      TensorBlockCwiseBinaryOp::Run(functor, inner_dim_size, output_index,
                                    output_stride, output_data, left_index,
                                    left_stride, left_data, right_index,
                                    right_stride, right_data);
      // Update index.
      for (int j = 0; j < num_squeezed_dims; ++j) {
        BlockIteratorState& state = block_iter_state[j];
        if (++state.count < state.size) {
          output_index += state.output_stride;
          left_index += state.left_stride;
          right_index += state.right_stride;
          break;
        }
        state.count = 0;
        output_index -= state.output_span;
        left_index -= state.left_span;
        right_index -= state.right_span;
      }
    }
  }
};

/**
 * \class TensorBlockView
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Read-only view into a block of data.
 *
 * This class provides read-only access to a block of data in impl. It may need
 * to allocate space for holding the intermediate result.
 *
 */
template <class ArgType, class Device>
struct TensorBlockView {
  typedef TensorEvaluator<ArgType, Device> Impl;
  typedef typename Impl::Index StorageIndex;
  typedef typename remove_const<typename Impl::Scalar>::type Scalar;
  static const int NumDims = array_size<typename Impl::Dimensions>::value;
  typedef DSizes<StorageIndex, NumDims> Dimensions;

  // Constructs a TensorBlockView for `impl`. `block` is only used for for
  // specifying the start offset, shape, and strides of the block.
  template <typename OtherTensorBlock>
  TensorBlockView(const Device& device,
                  const TensorEvaluator<ArgType, Device>& impl,
                  const OtherTensorBlock& block)
      : m_device(device),
        m_block_sizes(block.block_sizes()),
        m_data(NULL),
        m_allocated_data(NULL) {
    if (Impl::RawAccess && impl.data() != NULL) {
      m_data = impl.data() + block.first_coeff_index();
      m_block_strides = block.tensor_strides();
    } else {
      // Actually make a copy.

      // TODO(wuke): This sometimes put a lot pressure on the heap allocator.
      // Consider allowing ops to request additional temporary block memory in
      // TensorOpResourceRequirements.
      m_allocated_data = static_cast<Scalar*>(
          m_device.allocate(m_block_sizes.TotalSize() * sizeof(Scalar)));
      m_data = m_allocated_data;
      if (NumDims > 0) {
        if (static_cast<int>(Impl::Layout) == static_cast<int>(ColMajor)) {
          m_block_strides[0] = 1;
          for (int i = 1; i < NumDims; ++i) {
            m_block_strides[i] = m_block_strides[i - 1] * m_block_sizes[i - 1];
          }
        } else {
          m_block_strides[NumDims - 1] = 1;
          for (int i = NumDims - 2; i >= 0; --i) {
            m_block_strides[i] = m_block_strides[i + 1] * m_block_sizes[i + 1];
          }
        }
      }
      TensorBlock<Scalar, StorageIndex, NumDims, Impl::Layout> input_block(
          block.first_coeff_index(), m_block_sizes, m_block_strides,
          block.tensor_strides(), m_allocated_data);
      impl.block(&input_block);
    }
  }

  ~TensorBlockView() {
    if (m_allocated_data != NULL) {
      m_device.deallocate(m_allocated_data);
    }
  }

  const Dimensions& block_sizes() const { return m_block_sizes; }
  const Dimensions& block_strides() const { return m_block_strides; }
  const Scalar* data() const { return m_data; }

 private:
  const Device EIGEN_DEVICE_REF m_device;
  Dimensions m_block_sizes, m_block_strides;
  const Scalar* m_data;      // Not owned.
  Scalar* m_allocated_data;  // Owned.
};

/**
 * \class TensorBlockMapper
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor block mapper class.
 *
 * This class is responsible for iterating over the blocks of a tensor.
 */
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
class TensorBlockMapper {
 public:
  typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
  typedef DSizes<StorageIndex, NumDims> Dimensions;

  TensorBlockMapper(const Dimensions& dims,
                    const TensorBlockShapeType block_shape,
                    Index min_target_size)
      : m_dimensions(dims),
        m_block_dim_sizes(BlockDimensions(dims, block_shape, internal::convert_index<StorageIndex>(min_target_size))) {
    // Calculate block counts by dimension and total block count.
    DSizes<StorageIndex, NumDims> block_count;
    for (Index i = 0; i < block_count.rank(); ++i) {
      block_count[i] = divup(m_dimensions[i], m_block_dim_sizes[i]);
    }
    m_total_block_count = array_prod(block_count);

    // Calculate block strides (used for enumerating blocks).
    if (NumDims > 0) {
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        m_block_strides[0] = 1;
        m_tensor_strides[0] = 1;
        for (int i = 1; i < NumDims; ++i) {
          m_block_strides[i] = m_block_strides[i - 1] * block_count[i - 1];
          m_tensor_strides[i] = m_tensor_strides[i - 1] * m_dimensions[i - 1];
        }
      } else {
        m_block_strides[NumDims - 1] = 1;
        m_tensor_strides[NumDims - 1] = 1;
        for (int i = NumDims - 2; i >= 0; --i) {
          m_block_strides[i] = m_block_strides[i + 1] * block_count[i + 1];
          m_tensor_strides[i] = m_tensor_strides[i + 1] * m_dimensions[i + 1];
        }
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Block
  GetBlockForIndex(StorageIndex block_index, Scalar* data) const {
    StorageIndex first_coeff_index = 0;
    DSizes<StorageIndex, NumDims> coords;
    DSizes<StorageIndex, NumDims> sizes;
    DSizes<StorageIndex, NumDims> strides;
    if (NumDims > 0) {
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        for (int i = NumDims - 1; i > 0; --i) {
          const StorageIndex idx = block_index / m_block_strides[i];
          coords[i] = idx * m_block_dim_sizes[i];
          sizes[i] =
              numext::mini((m_dimensions[i] - coords[i]), m_block_dim_sizes[i]);
          block_index -= idx * m_block_strides[i];
          first_coeff_index += coords[i] * m_tensor_strides[i];
        }
        coords[0] = block_index * m_block_dim_sizes[0];
        sizes[0] =
            numext::mini((m_dimensions[0] - coords[0]), m_block_dim_sizes[0]);
        first_coeff_index += coords[0] * m_tensor_strides[0];

        strides[0] = 1;
        for (int i = 1; i < NumDims; ++i) {
          strides[i] = strides[i - 1] * sizes[i - 1];
        }
      } else {
        for (int i = 0; i < NumDims - 1; ++i) {
          const StorageIndex idx = block_index / m_block_strides[i];
          coords[i] = idx * m_block_dim_sizes[i];
          sizes[i] =
              numext::mini((m_dimensions[i] - coords[i]), m_block_dim_sizes[i]);
          block_index -= idx * m_block_strides[i];
          first_coeff_index += coords[i] * m_tensor_strides[i];
        }
        coords[NumDims - 1] = block_index * m_block_dim_sizes[NumDims - 1];
        sizes[NumDims - 1] =
            numext::mini((m_dimensions[NumDims - 1] - coords[NumDims - 1]),
                         m_block_dim_sizes[NumDims - 1]);
        first_coeff_index +=
            coords[NumDims - 1] * m_tensor_strides[NumDims - 1];

        strides[NumDims - 1] = 1;
        for (int i = NumDims - 2; i >= 0; --i) {
          strides[i] = strides[i + 1] * sizes[i + 1];
        }
      }
    }

    return Block(first_coeff_index, sizes, strides, m_tensor_strides, data);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageIndex total_block_count() const {
    return m_total_block_count;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageIndex
  block_dims_total_size() const {
    return m_block_dim_sizes.TotalSize();
  }

 private:
  static Dimensions BlockDimensions(const Dimensions& tensor_dims,
                                    const TensorBlockShapeType block_shape,
                                    StorageIndex min_target_size) {
    min_target_size = numext::maxi<StorageIndex>(1, min_target_size);

    // If tensor fully fits into the target size, we'll treat it a single block.
    Dimensions block_dim_sizes = tensor_dims;

    if (tensor_dims.TotalSize() == 0) {
      // Corner case: one of the dimensions is zero. Logic below is too complex
      // to handle this case on a general basis, just use unit block size.
      // Note: we must not yield blocks with zero dimensions (recipe for
      // overflows/underflows, divisions by zero and NaNs later).
      for (int i = 0; i < NumDims; ++i) {
        block_dim_sizes[i] = 1;
      }
    } else if (block_dim_sizes.TotalSize() > min_target_size) {
      if (block_shape == kUniformAllDims) {
        // Tensor will not fit within 'min_target_size' budget: calculate tensor
        // block dimension sizes based on "square" dimension size target.
        const StorageIndex dim_size_target = internal::convert_index<StorageIndex>(
          std::pow(static_cast<float>(min_target_size),
                   1.0f / static_cast<float>(block_dim_sizes.rank())));
        for (Index i = 0; i < block_dim_sizes.rank(); ++i) {
          // TODO(andydavis) Adjust the inner most 'block_dim_size' to make it
          // a multiple of the packet size. Note that reducing
          // 'block_dim_size' in this manner can increase the number of
          // blocks, and so will amplify any per-block overhead.
          block_dim_sizes[i] = numext::mini(dim_size_target, tensor_dims[i]);
        }
        // Add any un-allocated coefficients to inner dimension(s).
        StorageIndex total_size = block_dim_sizes.TotalSize();
        for (int i = 0; i < NumDims; ++i) {
          const int dim = cond<Layout>()(i, NumDims - i - 1);
          if (block_dim_sizes[dim] < tensor_dims[dim]) {
            const StorageIndex total_size_other_dims =
                total_size / block_dim_sizes[dim];
            const StorageIndex alloc_avail =
                divup<StorageIndex>(min_target_size, total_size_other_dims);
            if (alloc_avail == block_dim_sizes[dim]) {
              // Insufficient excess coefficients to allocate.
              break;
            }
            block_dim_sizes[dim] = numext::mini(tensor_dims[dim], alloc_avail);
            total_size = total_size_other_dims * block_dim_sizes[dim];
          }
        }
      } else if (block_shape == kSkewedInnerDims) {
        StorageIndex coeff_to_allocate = min_target_size;
        for (int i = 0; i < NumDims; ++i) {
          const int dim = cond<Layout>()(i, NumDims - i - 1);
          block_dim_sizes[dim] =
              numext::mini(coeff_to_allocate, tensor_dims[dim]);
          coeff_to_allocate = divup(
              coeff_to_allocate,
              numext::maxi(static_cast<StorageIndex>(1), block_dim_sizes[dim]));
        }
        eigen_assert(coeff_to_allocate == 1);
      } else {
        eigen_assert(false);  // someone added new block shape type
      }
    }

    eigen_assert(
        block_dim_sizes.TotalSize() >=
        numext::mini<Index>(min_target_size, tensor_dims.TotalSize()));

    return block_dim_sizes;
  }

  Dimensions m_dimensions;
  Dimensions m_block_dim_sizes;
  Dimensions m_block_strides;
  Dimensions m_tensor_strides;
  StorageIndex m_total_block_count;
};

/**
 * \class TensorSliceBlockMapper
 * \ingroup CXX11_Tensor_Module
 *
 * \brief Tensor slice block mapper class.
 *
 * This class is responsible for iterating over the blocks of
 * a slice of a tensor. Supports shuffling of the block strides
 * for callers that want to reduce strides for dimensions to be
 * processed together.
 *
 */
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
class TensorSliceBlockMapper {
 public:
  typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
  typedef DSizes<StorageIndex, NumDims> Dimensions;

  TensorSliceBlockMapper(const Dimensions& tensor_dims,
                         const Dimensions& tensor_slice_offsets,
                         const Dimensions& tensor_slice_extents,
                         const Dimensions& block_dim_sizes,
                         const Dimensions& block_stride_order)
      : m_tensor_dimensions(tensor_dims),
        m_tensor_slice_offsets(tensor_slice_offsets),
        m_tensor_slice_extents(tensor_slice_extents),
        m_block_dim_sizes(block_dim_sizes),
        m_block_stride_order(block_stride_order),
        m_total_block_count(1) {
    // Calculate block counts by dimension and total block count.
    DSizes<StorageIndex, NumDims> block_count;
    for (Index i = 0; i < block_count.rank(); ++i) {
      block_count[i] = divup(m_tensor_slice_extents[i], m_block_dim_sizes[i]);
    }
    m_total_block_count = array_prod(block_count);

    // Calculate block strides (used for enumerating blocks).
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_block_strides[0] = 1;
      m_tensor_strides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_block_strides[i] = m_block_strides[i - 1] * block_count[i - 1];
        m_tensor_strides[i] =
            m_tensor_strides[i - 1] * m_tensor_dimensions[i - 1];
      }
    } else {
      m_block_strides[NumDims - 1] = 1;
      m_tensor_strides[NumDims - 1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_block_strides[i] = m_block_strides[i + 1] * block_count[i + 1];
        m_tensor_strides[i] =
            m_tensor_strides[i + 1] * m_tensor_dimensions[i + 1];
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Block
  GetBlockForIndex(StorageIndex block_index, Scalar* data) const {
    StorageIndex first_coeff_index = 0;
    DSizes<StorageIndex, NumDims> coords;
    DSizes<StorageIndex, NumDims> sizes;
    DSizes<StorageIndex, NumDims> strides;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx = block_index / m_block_strides[i];
        coords[i] = m_tensor_slice_offsets[i] + idx * m_block_dim_sizes[i];
        sizes[i] = numext::mini(
            m_tensor_slice_offsets[i] + m_tensor_slice_extents[i] - coords[i],
            m_block_dim_sizes[i]);
        block_index -= idx * m_block_strides[i];
        first_coeff_index += coords[i] * m_tensor_strides[i];
      }
      coords[0] =
          m_tensor_slice_offsets[0] + block_index * m_block_dim_sizes[0];
      sizes[0] = numext::mini(
          m_tensor_slice_offsets[0] + m_tensor_slice_extents[0] - coords[0],
          m_block_dim_sizes[0]);
      first_coeff_index += coords[0] * m_tensor_strides[0];

      StorageIndex prev_dim = m_block_stride_order[0];
      strides[prev_dim] = 1;
      for (int i = 1; i < NumDims; ++i) {
        const StorageIndex curr_dim = m_block_stride_order[i];
        strides[curr_dim] = strides[prev_dim] * sizes[prev_dim];
        prev_dim = curr_dim;
      }
    } else {
      for (int i = 0; i < NumDims - 1; ++i) {
        const StorageIndex idx = block_index / m_block_strides[i];
        coords[i] = m_tensor_slice_offsets[i] + idx * m_block_dim_sizes[i];
        sizes[i] = numext::mini(
            m_tensor_slice_offsets[i] + m_tensor_slice_extents[i] - coords[i],
            m_block_dim_sizes[i]);
        block_index -= idx * m_block_strides[i];
        first_coeff_index += coords[i] * m_tensor_strides[i];
      }
      coords[NumDims - 1] = m_tensor_slice_offsets[NumDims - 1] +
                            block_index * m_block_dim_sizes[NumDims - 1];
      sizes[NumDims - 1] = numext::mini(
          m_tensor_slice_offsets[NumDims - 1] +
              m_tensor_slice_extents[NumDims - 1] - coords[NumDims - 1],
          m_block_dim_sizes[NumDims - 1]);
      first_coeff_index += coords[NumDims - 1] * m_tensor_strides[NumDims - 1];

      StorageIndex prev_dim = m_block_stride_order[NumDims - 1];
      strides[prev_dim] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        const StorageIndex curr_dim = m_block_stride_order[i];
        strides[curr_dim] = strides[prev_dim] * sizes[prev_dim];
        prev_dim = curr_dim;
      }
    }

    return Block(first_coeff_index, sizes, strides, m_tensor_strides, data);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageIndex total_block_count() const {
    return m_total_block_count;
  }

 private:
  Dimensions m_tensor_dimensions;
  Dimensions m_tensor_slice_offsets;
  Dimensions m_tensor_slice_extents;
  Dimensions m_tensor_strides;
  Dimensions m_block_dim_sizes;
  Dimensions m_block_stride_order;
  Dimensions m_block_strides;
  StorageIndex m_total_block_count;
};

}  // namespace internal

}  // namespace Eigen

#endif  // EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H