aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
blob: 70ca1433f33a0e80f3036506d688841f43b48489 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_H

namespace Eigen {

/** \class Tensor
  * \ingroup CXX11_Tensor_Module
  *
  * \brief The tensor class.
  *
  * The %Tensor class is the work-horse for all \em dense tensors within Eigen.
  *
  * The %Tensor class encompasses only dynamic-size objects so far.
  *
  * The first two template parameters are required:
  * \tparam Scalar_ \anchor tensor_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
  *                 User defined scalar types are supported as well (see \ref user_defined_scalars "here").
  * \tparam NumIndices_ Number of indices (i.e. rank of the tensor)
  *
  * The remaining template parameters are optional -- in most cases you don't have to worry about them.
  * \tparam Options_ \anchor tensor_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
  *                 \b #AutoAlign or \b #DontAlign.
  *                 The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
  *                 for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization.
  *                 Support for such operations (i.e. adding two tensors etc.) is planned.
  *
  * You can access elements of tensors using normal subscripting:
  *
  * \code
  * Eigen::Tensor<double, 4> t(10, 10, 10, 10);
  * t(0, 1, 2, 3) = 42.0;
  * \endcode
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN.
  *
  * <i><b>Some notes:</b></i>
  *
  * <dl>
  * <dt><b>Relation to other parts of Eigen:</b></dt>
  * <dd>The midterm developement goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that
  * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code
  * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor
  * class does not provide any of these features and is only available as a stand-alone class that just allows for
  * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to
  * change dramatically.</dd>
  * </dl>
  *
  * \ref TopicStorageOrders 
  */
template<typename Scalar_, std::size_t NumIndices_, int Options_ = 0>
class Tensor;

namespace internal {
template<typename Scalar_, std::size_t NumIndices_, int Options_>
struct traits<Tensor<Scalar_, NumIndices_, Options_>>
{
  typedef Scalar_ Scalar;
  typedef Dense StorageKind;
  typedef DenseIndex Index;
  enum {
    Options = Options_
  };
};

template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
struct tensor_index_linearization_helper
{
  constexpr static inline Index run(std::array<Index, NumIndices> const& indices, std::array<Index, NumIndices> const& dimensions)
  {
    return std_array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) + 
      std_array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) *
        tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
  }
};

template<typename Index, std::size_t NumIndices, bool RowMajor>
struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
{
  constexpr static inline Index run(std::array<Index, NumIndices> const& indices, std::array<Index, NumIndices> const&)
  {
    return std_array_get<RowMajor ? 0 : NumIndices - 1>(indices);
  }
};
} // end namespace internal

template<typename Scalar_, std::size_t NumIndices_, int Options_>
class Tensor
{
    static_assert(NumIndices_ >= 1, "A tensor must have at least one index.");
  
  public:
    typedef Tensor<Scalar_, NumIndices_, Options_> Self;
    typedef typename internal::traits<Self>::StorageKind StorageKind;
    typedef typename internal::traits<Self>::Index Index;
    typedef typename internal::traits<Self>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef Self DenseType;

    constexpr static int Options = Options_;
    constexpr static std::size_t NumIndices = NumIndices_;

  protected:
    TensorStorage<Scalar, NumIndices, Dynamic, Options> m_storage;

  public:
    EIGEN_STRONG_INLINE Index                         dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
    EIGEN_STRONG_INLINE std::array<Index, NumIndices> dimensions()             const { return m_storage.dimensions(); }
    EIGEN_STRONG_INLINE Index                         size()                   const { return internal::array_prod(m_storage.dimensions()); }
    EIGEN_STRONG_INLINE Scalar                        *data()                        { return m_storage.data(); }
    EIGEN_STRONG_INLINE const Scalar                  *data()                  const { return m_storage.data(); }

    // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    // work, because that uses base().coeffRef() - and we don't yet
    // implement a similar class hierarchy
    inline Self& base()             { return *this; }
    inline const Self& base() const { return *this; }

    void setZero()
    {
      // FIXME: until we have implemented packet access and the
      //        expression engine w.r.t. nullary ops, use this
      //        as a kludge. Only works with POD types, but for
      //        any standard usage, this shouldn't be a problem
      memset((void *)data(), 0, size() * sizeof(Scalar));
    }

    inline Self& operator=(Self const& other)
    {
      m_storage = other.m_storage;
      return *this;
    }

    template<typename... IndexTypes>
    inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
    {
      static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
      return coeff(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }

    inline const Scalar& coeff(const std::array<Index, NumIndices>& indices) const
    {
      eigen_internal_assert(checkIndexRange(indices));
      return m_storage.data()[linearizedIndex(indices)];
    }

    inline const Scalar& coeff(Index index) const
    {
      eigen_internal_assert(index >= 0 && index < size());
      return m_storage.data()[index];
    }

    template<typename... IndexTypes>
    inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
    {
      static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
      return coeffRef(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }

    inline Scalar& coeffRef(const std::array<Index, NumIndices>& indices)
    {
      eigen_internal_assert(checkIndexRange(indices));
      return m_storage.data()[linearizedIndex(indices)];
    }

    inline Scalar& coeffRef(Index index)
    {
      eigen_internal_assert(index >= 0 && index < size());
      return m_storage.data()[index];
    }

    template<typename... IndexTypes>
    inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
    {
      static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
      return this->operator()(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }

    inline const Scalar& operator()(const std::array<Index, NumIndices>& indices) const
    {
      eigen_assert(checkIndexRange(indices));
      return coeff(indices);
    }

    inline const Scalar& operator()(Index index) const
    {
      eigen_internal_assert(index >= 0 && index < size());
      return coeff(index);
    }

    inline const Scalar& operator[](Index index) const
    {
      static_assert(NumIndices == 1, "The bracket operator is only for vectors, use the parenthesis operator instead.");
      return coeff(index);
    }

    template<typename... IndexTypes>
    inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
    {
      static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
      return operator()(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }

    inline Scalar& operator()(const std::array<Index, NumIndices>& indices)
    {
      eigen_assert(checkIndexRange(indices));
      return coeffRef(indices);
    }

    inline Scalar& operator()(Index index)
    {
      eigen_assert(index >= 0 && index < size());
      return coeffRef(index);
    }

    inline Scalar& operator[](Index index)
    {
      static_assert(NumIndices == 1, "The bracket operator is only for vectors, use the parenthesis operator instead.");
      return coeffRef(index);
    }

    inline Tensor()
      : m_storage()
    {
    }

    inline Tensor(const Self& other)
      : m_storage(other.m_storage)
    {
    }

    inline Tensor(Self&& other)
      : m_storage(other.m_storage)
    {
    }

    template<typename... IndexTypes>
    inline Tensor(Index firstDimension, IndexTypes... otherDimensions)
      : m_storage()
    {
      static_assert(sizeof...(otherDimensions) + 1 == NumIndices, "Number of dimensions used to construct a tensor must be equal to the rank of the tensor.");
      resize(std::array<Index, NumIndices>{{firstDimension, otherDimensions...}});
    }

    inline Tensor(std::array<Index, NumIndices> dimensions)
      : m_storage(internal::array_prod(dimensions), dimensions)
    {
      EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    }

    template<typename... IndexTypes>
    void resize(Index firstDimension, IndexTypes... otherDimensions)
    {
      static_assert(sizeof...(otherDimensions) + 1 == NumIndices, "Number of dimensions used to resize a tensor must be equal to the rank of the tensor.");
      resize(std::array<Index, NumIndices>{{firstDimension, otherDimensions...}});
    }

    void resize(const std::array<Index, NumIndices>& dimensions)
    {
      std::size_t i;
      Index size = Index(1);
      for (i = 0; i < NumIndices; i++) {
        internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
        size *= dimensions[i];
      }
      #ifdef EIGEN_INITIALIZE_COEFFS
        bool size_changed = size != this->size();
        m_storage.resize(size, dimensions);
        if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
      #else
        m_storage.resize(size, dimensions);
      #endif
    }

  protected:
    bool checkIndexRange(const std::array<Index, NumIndices>& indices) const
    {
      using internal::array_apply_and_reduce;
      using internal::array_zip_and_reduce;
      using internal::greater_equal_zero_op;
      using internal::logical_and_op;
      using internal::lesser_op;

      return
        // check whether the indices are all >= 0
        array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
        // check whether the indices fit in the dimensions
        array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
    }

    inline Index linearizedIndex(const std::array<Index, NumIndices>& indices) const
    {
      return internal::tensor_index_linearization_helper<Index, NumIndices, NumIndices - 1, Options&RowMajor>::run(indices, m_storage.dimensions());
    }
};

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_H

/*
 * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
 */