aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
blob: 037219f236d5c904bb160206a4f329aec95ad455 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_H

namespace Eigen {

/** \class Tensor
  * \ingroup CXX11_Tensor_Module
  *
  * \brief The tensor class.
  *
  * The %Tensor class is the work-horse for all \em dense tensors within Eigen.
  *
  * The %Tensor class encompasses only dynamic-size objects so far.
  *
  * The first two template parameters are required:
  * \tparam Scalar_ \anchor tensor_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
  *                 User defined scalar types are supported as well (see \ref user_defined_scalars "here").
  * \tparam NumIndices_ Number of indices (i.e. rank of the tensor)
  *
  * The remaining template parameters are optional -- in most cases you don't have to worry about them.
  * \tparam Options_ \anchor tensor_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
  *                 \b #AutoAlign or \b #DontAlign.
  *                 The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
  *                 for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization.
  *                 Support for such operations (i.e. adding two tensors etc.) is planned.
  *
  * You can access elements of tensors using normal subscripting:
  *
  * \code
  * Eigen::Tensor<double, 4> t(10, 10, 10, 10);
  * t(0, 1, 2, 3) = 42.0;
  * \endcode
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN.
  *
  * <i><b>Some notes:</b></i>
  *
  * <dl>
  * <dt><b>Relation to other parts of Eigen:</b></dt>
  * <dd>The midterm developement goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that
  * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code
  * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor
  * class does not provide any of these features and is only available as a stand-alone class that just allows for
  * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to
  * change dramatically.</dd>
  * </dl>
  *
  * \ref TopicStorageOrders
  */

template<typename Scalar_, std::size_t NumIndices_, int Options_>
class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_> >
{
  public:
    typedef Tensor<Scalar_, NumIndices_, Options_> Self;
    typedef TensorBase<Tensor<Scalar_, NumIndices_, Options_> > Base;
    typedef typename Eigen::internal::nested<Self>::type Nested;
    typedef typename internal::traits<Self>::StorageKind StorageKind;
    typedef typename internal::traits<Self>::Index Index;
    typedef Scalar_ Scalar;
    typedef typename internal::packet_traits<Scalar>::type Packet;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef typename Base::CoeffReturnType CoeffReturnType;
    typedef typename Base::PacketReturnType PacketReturnType;

    enum {
      IsAligned = bool(EIGEN_ALIGN) & !(Options_&DontAlign),
      PacketAccess = (internal::packet_traits<Scalar>::size > 1),
      Layout = Options_ & RowMajor ? RowMajor : ColMajor,
      CoordAccess = true,
    };

    static const int Options = Options_;
    static const std::size_t NumIndices = NumIndices_;
    typedef DSizes<Index, NumIndices_> Dimensions;

  protected:
    TensorStorage<Scalar, NumIndices, Dynamic, Options> m_storage;

  public:
    // Metadata
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         rank()                   const { return NumIndices; }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const DSizes<DenseIndex, NumIndices_>& dimensions()    const { return m_storage.dimensions(); }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         size()                   const { return m_storage.size(); }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar                        *data()                        { return m_storage.data(); }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar                  *data()                  const { return m_storage.data(); }

    // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    // work, because that uses base().coeffRef() - and we don't yet
    // implement a similar class hierarchy
    inline Self& base()             { return *this; }
    inline const Self& base() const { return *this; }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
    {
      // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
      EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
      return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }
#endif

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const
    {
      eigen_internal_assert(checkIndexRange(indices));
      return m_storage.data()[linearizedIndex(indices)];
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
    {
      eigen_internal_assert(index >= 0 && index < size());
      return m_storage.data()[index];
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
    {
      // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
      EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
      return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }
#endif

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
    {
      eigen_internal_assert(checkIndexRange(indices));
      return m_storage.data()[linearizedIndex(indices)];
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
    {
      eigen_internal_assert(index >= 0 && index < size());
      return m_storage.data()[index];
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
    {
      // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
      EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
      return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }
#else
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
    {
      return coeff(array<Index, 2>(i0, i1));
    }
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
    {
      return coeff(array<Index, 3>(i0, i1, i2));
    }
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
    {
      return coeff(array<Index, 4>(i0, i1, i2, i3));
    }
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
    {
      return coeff(array<Index, 5>(i0, i1, i2, i3, i4));
    }
#endif

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
    {
      eigen_assert(checkIndexRange(indices));
      return coeff(indices);
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
    {
      eigen_internal_assert(index >= 0 && index < size());
      return coeff(index);
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const
    {
      // The bracket operator is only for vectors, use the parenthesis operator instead.
      EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
      return coeff(index);
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
    {
      // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
      EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
      return operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }
#else
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
    {
      return coeffRef(array<Index, 2>(i0, i1));
    }
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
    {
      return coeffRef(array<Index, 3>(i0, i1, i2));
    }
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
    {
      return coeffRef(array<Index, 4>(i0, i1, i2, i3));
    }
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
    {
      return coeffRef(array<Index, 5>(i0, i1, i2, i3, i4));
    }
#endif

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
    {
      eigen_assert(checkIndexRange(indices));
      return coeffRef(indices);
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index)
    {
      eigen_assert(index >= 0 && index < size());
      return coeffRef(index);
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index)
    {
      // The bracket operator is only for vectors, use the parenthesis operator instead
      EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
      return coeffRef(index);
    }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Tensor()
      : m_storage()
    {
    }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Tensor(const Self& other)
      : m_storage(other.m_storage)
    {
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    inline Tensor(Index firstDimension, IndexTypes... otherDimensions)
        : m_storage(internal::array_prod(array<Index, NumIndices>{{firstDimension, otherDimensions...}}), array<Index, NumIndices>{{firstDimension, otherDimensions...}})
    {
      // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
      EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
    }
#else
    inline explicit Tensor(Index dim1)
      : m_storage(dim1, array<Index, 1>(dim1))
    {
      EIGEN_STATIC_ASSERT(1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
    }
    inline explicit Tensor(Index dim1, Index dim2)
      : m_storage(dim1*dim2, array<Index, 2>(dim1, dim2))
    {
      EIGEN_STATIC_ASSERT(2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
    }
    inline explicit Tensor(Index dim1, Index dim2, Index dim3)
      : m_storage(dim1*dim2*dim3, array<Index, 3>(dim1, dim2, dim3))
    {
      EIGEN_STATIC_ASSERT(3 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
    }
    inline explicit Tensor(Index dim1, Index dim2, Index dim3, Index dim4)
      : m_storage(dim1*dim2*dim3*dim4, array<Index, 4>(dim1, dim2, dim3, dim4))
    {
      EIGEN_STATIC_ASSERT(4 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
    }
    inline explicit Tensor(Index dim1, Index dim2, Index dim3, Index dim4, Index dim5)
      : m_storage(dim1*dim2*dim3*dim4*dim5, array<Index, 4>(dim1, dim2, dim3, dim4, dim5))
    {
      EIGEN_STATIC_ASSERT(5 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
    }
#endif

    inline explicit Tensor(const array<Index, NumIndices>& dimensions)
        : m_storage(internal::array_prod(dimensions), dimensions)
    {
      EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    }

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, ReadOnlyAccessors>& other)
    {
      typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
      Assign assign(*this, other.derived());
      resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
    }
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, WriteAccessors>& other)
    {
      typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
      Assign assign(*this, other.derived());
      resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
    }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Tensor& operator=(const Tensor& other)
    {
      typedef TensorAssignOp<Tensor, const Tensor> Assign;
      Assign assign(*this, other);
      resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
      return *this;
    }
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Tensor& operator=(const OtherDerived& other)
    {
      typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
      Assign assign(*this, other);
      resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
      return *this;
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    void resize(Index firstDimension, IndexTypes... otherDimensions)
    {
      // The number of dimensions used to resize a tensor must be equal to the rank of the tensor.
      EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
      resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}});
    }
#endif

    EIGEN_DEVICE_FUNC void resize(const array<Index, NumIndices>& dimensions)
    {
      std::size_t i;
      Index size = Index(1);
      for (i = 0; i < NumIndices; i++) {
        internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
        size *= dimensions[i];
      }
      #ifdef EIGEN_INITIALIZE_COEFFS
        bool size_changed = size != this->size();
        m_storage.resize(size, dimensions);
        if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
      #else
        m_storage.resize(size, dimensions);
      #endif
    }

    EIGEN_DEVICE_FUNC void resize(const DSizes<Index, NumIndices>& dimensions) {
      array<Index, NumIndices> dims;
      for (std::size_t i = 0; i < NumIndices; ++i) {
        dims[i] = dimensions[i];
      }
      resize(dims);
    }

  protected:

    bool checkIndexRange(const array<Index, NumIndices>& indices) const
    {
      using internal::array_apply_and_reduce;
      using internal::array_zip_and_reduce;
      using internal::greater_equal_zero_op;
      using internal::logical_and_op;
      using internal::lesser_op;

      return
        // check whether the indices are all >= 0
        array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
        // check whether the indices fit in the dimensions
        array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const
    {
      if (Options&RowMajor) {
        return m_storage.dimensions().IndexOfRowMajor(indices);
      } else {
        return m_storage.dimensions().IndexOfColMajor(indices);
      }
    }
};

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_H