1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
|
# Eigen Tensors
Tensors are multidimensional arrays of elements. Elements are typically scalars,
but more complex types such as strings are also supported.
[TOC]
## Tensor Classes
You can manipulate a tensor with one of the following classes. They all are in
the namespace ```::Eigen.```
### Class Tensor<data_type, rank>
This is the class to use to create a tensor and allocate memory for it. The
class is templatized with the tensor datatype, such as float or int, and the
tensor rank. The rank is the number of dimensions, for example rank 2 is a
matrix.
Tensors of this class are resizable. For example, if you assign a tensor of a
different size to a Tensor, that tensor is resized to match its new value.
#### Constructor Tensor<data_type, rank>(size0, size1, ...)
Constructor for a Tensor. The constructor must be passed ```rank``` integers
indicating the sizes of the instance along each of the the ```rank```
dimensions.
// Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns
// memory to hold 24 floating point values (24 = 2 x 3 x 4).
Tensor<float, 3> t_3d(2, 3, 4);
// Resize t_3d by assigning a tensor of different sizes, but same rank.
t_3d = Tensor<float, 3>(3, 4, 3);
#### Constructor Tensor<data_type, rank>(size_array)
Constructor where the sizes for the constructor are specified as an array of
values instead of an explicitly list of parameters. The array type to use is
```Eigen::array<Eigen::Index>```. The array can be constructed automatically
from an initializer list.
// Create a tensor of strings of rank 2 with sizes 5, 7.
Tensor<string, 2> t_2d({5, 7});
### Class TensorFixedSize<data_type, Sizes<size0, size1, ...>>
Class to use for tensors of fixed size, where the size is known at compile
time. Fixed sized tensors can provide very fast computations because all their
dimensions are known by the compiler. FixedSize tensors are not resizable.
If the total number of elements in a fixed size tensor is small enough the
tensor data is held onto the stack and does not cause heap allocation and free.
// Create a 4 x 3 tensor of floats.
TensorFixedSize<float, Sizes<4, 3>> t_4x3;
### Class TensorMap<Tensor<data_type, rank>>
This is the class to use to create a tensor on top of memory allocated and
owned by another part of your code. It allows to view any piece of allocated
memory as a Tensor. Instances of this class do not own the memory where the
data are stored.
A TensorMap is not resizable because it does not own the memory where its data
are stored.
#### Constructor TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...)
Constructor for a Tensor. The constructor must be passed a pointer to the
storage for the data, and "rank" size attributes. The storage has to be
large enough to hold all the data.
// Map a tensor of ints on top of stack-allocated storage.
int storage[128]; // 2 x 4 x 2 x 8 = 128
TensorMap<Tensor<int, 4>> t_4d(storage, 2, 4, 2, 8);
// The same storage can be viewed as a different tensor.
// You can also pass the sizes as an array.
TensorMap<Tensor<int, 2>> t_2d(storage, 16, 8);
// You can also map fixed-size tensors. Here we get a 1d view of
// the 2d fixed-size tensor.
TensorFixedSize<float, Sizes<4, 5>> t_4x3;
TensorMap<Tensor<float, 1>> t_12(t_4x3.data(), 12);
#### Class TensorRef
See Assigning to a TensorRef below.
## Accessing Tensor Elements
#### <data_type> tensor(index0, index1...)
Return the element at position ```(index0, index1...)``` in tensor
```tensor```. You must pass as many parameters as the rank of ```tensor```.
The expression can be used as an l-value to set the value of the element at the
specified position. The value returned is of the datatype of the tensor.
// Set the value of the element at position (0, 1, 0);
Tensor<float, 3> t_3d(2, 3, 4);
t_3d(0, 1, 0) = 12.0f;
// Initialize all elements to random values.
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 4; ++k) {
t_3d(i, j, k) = ...some random value...;
}
}
}
// Print elements of a tensor.
for (int i = 0; i < 2; ++i) {
LOG(INFO) << t_3d(i, 0, 0);
}
## TensorLayout
The tensor library supports 2 layouts: ```ColMajor``` (the default) and
```RowMajor```. Only the default column major layout is currently fully
supported, and it is therefore not recommended to attempt to use the row major
layout at the moment.
The layout of a tensor is optionally specified as part of its type. If not
specified explicitly column major is assumed.
Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3>
TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...);
All the arguments to an expression must use the same layout. Attempting to mix
different layouts will result in a compilation error.
It is possible to change the layout of a tensor or an expression using the
```swap_layout()``` method. Note that this will also reverse the order of the
dimensions.
Tensor<float, 2, ColMajor> col_major(2, 4);
Tensor<float, 2, RowMajor> row_major(2, 4);
Tensor<float, 2> col_major_result = col_major; // ok, layouts match
Tensor<float, 2> col_major_result = row_major; // will not compile
// Simple layout swap
col_major_result = row_major.swap_layout();
eigen_assert(col_major_result.dimension(0) == 4);
eigen_assert(col_major_result.dimension(1) == 2);
// Swap the layout and preserve the order of the dimensions
array<int, 2> shuffle(1, 0);
col_major_result = row_major.swap_layout().shuffle(shuffle);
eigen_assert(col_major_result.dimension(0) == 2);
eigen_assert(col_major_result.dimension(1) == 4);
## Tensor Operations
The Eigen Tensor library provides a vast library of operations on Tensors:
numerical operations such as addition and multiplication, geometry operations
such as slicing and shuffling, etc. These operations are available as methods
of the Tensor classes, and in some cases as operator overloads. For example
the following code computes the elementwise addition of two tensors:
Tensor<float, 3> t1(2, 3, 4);
...set some values in t1...
Tensor<float, 3> t2(2, 3, 4);
...set some values in t2...
// Set t3 to the element wise sum of t1 and t2
Tensor<float, 3> t3 = t1 + t2;
While the code above looks easy enough, it is important to understand that the
expression ```t1 + t2``` is not actually adding the values of the tensors. The
expression instead constructs a "tensor operator" object of the class
TensorCwiseBinaryOp<scalar_sum>, which has references to the tensors
```t1``` and ```t2```. This is a small C++ object that knows how to add
```t1``` and ```t2```. It is only when the value of the expression is assigned
to the tensor ```t3``` that the addition is actually performed. Technically,
this happens through the overloading of ```operator=()``` in the Tensor class.
This mechanism for computing tensor expressions allows for lazy evaluation and
optimizations which are what make the tensor library very fast.
Of course, the tensor operators do nest, and the expression ```t1 + t2 *
0.3f``` is actually represented with the (approximate) tree of operators:
TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f))
### Tensor Operations and C++ "auto"
Because Tensor operations create tensor operators, the C++ ```auto``` keyword
does not have its intuitive meaning. Consider these 2 lines of code:
Tensor<float, 3> t3 = t1 + t2;
auto t4 = t1 + t2;
In the first line we allocate the tensor ```t3``` and it will contain the
result of the addition of ```t1``` and ```t2```. In the second line, ```t4```
is actually the tree of tensor operators that will compute the addition of
```t1``` and ```t2```. In fact, ```t4``` is *not* a tensor and you cannot get
the values of its elements:
Tensor<float, 3> t3 = t1 + t2;
cout << t3(0, 0, 0); // OK prints the value of t1(0, 0, 0) + t2(0, 0, 0)
auto t4 = t1 + t2;
cout << t4(0, 0, 0); // Compilation error!
When you use ```auto``` you do not get a Tensor as a result but instead a
non-evaluated expression. So only use ```auto``` to delay evaluation.
Unfortunately, there is no single underlying concrete type for holding
non-evaluated expressions, hence you have to use auto in the case when you do
want to hold non-evaluated expressions.
When you need the results of set of tensor computations you have to assign the
result to a Tensor that will be capable of holding onto them. This can be
either a normal Tensor, a fixed size Tensor, or a TensorMap on an existing
piece of memory. All the following will work:
auto t4 = t1 + t2;
Tensor<float, 3> result = t4; // Could also be: result(t4);
cout << result(0, 0, 0);
TensorMap<float, 4> result(<a float* with enough space>, <size0>, ...) = t4;
cout << result(0, 0, 0);
TensorFixedSize<float, Sizes<size0, ...>> result = t4;
cout << result(0, 0, 0);
Until you need the results, you can keep the operation around, and even reuse
it for additional operations. As long as you keep the expression as an
operation, no computation is performed.
// One way to compute exp((t1 + t2) * 0.2f);
auto t3 = t1 + t2;
auto t4 = t3 * 0.2f;
auto t5 = t4.exp();
Tensor<float, 3> result = t5;
// Another way, exactly as efficient as the previous one:
Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
### Controlling When Expression are Evaluated
There are several ways to control when expressions are evaluated:
* Assignment to a Tensor, TensorFixedSize, or TensorMap.
* Use of the eval() method.
* Assignment to a TensorRef.
#### Assigning to a Tensor, TensorFixedSize, or TensorMap.
The most common way to evaluate an expression is to assign it to a Tensor. In
the example below, the ```auto``` declarations make the intermediate values
"Operations", not Tensors, and do not cause the expressions to be evaluated.
The assignment to the Tensor ```result``` causes the evaluation of all the
operations.
auto t3 = t1 + t2; // t3 is an Operation.
auto t4 = t3 * 0.2f; // t4 is an Operation.
auto t5 = t4.exp(); // t5 is an Operation.
Tensor<float, 3> result = t5; // The operations are evaluated.
If you know the ranks and sizes of the Operation value you can assign the
Operation to a TensorFixedSize instead of a Tensor, which is a bit more
efficient.
// We know that the result is a 4x4x2 tensor!
TensorFixedSize<float, Sizes<4, 4, 2>> result = t5;
Simiarly, assigning an expression to a TensorMap causes its evaluation. Like
tensors of type TensorFixedSize, TensorMaps cannot be resized so they have to
have the rank and sizes of the expression that are assigned to them.
#### Calling eval().
When you compute large composite expressions, you sometimes want to tell Eigen
that an intermediate value in the expression tree is worth evaluating ahead of
time. This is done by inserting a call to the ```eval()``` method of the
expression Operation.
// The previous example could have been written:
Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
// If you want to compute (t1 + t2) once ahead of time you can write:
Tensor<float, 3> result = ((t1 + t2).eval() * 0.2f).exp();
Semantically, calling ```eval()``` is equivalent to materializing the value of
the expression in a temporary Tensor of the right size. The code above in
effect does:
// .eval() knows the size!
TensorFixedSize<float, Sizes<4, 4, 2>> tmp = t1 + t2;
Tensor<float, 3> result = (tmp * 0.2f).exp();
Note that the return value of ```eval()``` is itself an Operation, so the
following code does not do what you may think:
// Here t3 is an evaluation Operation. t3 has not been evaluated yet.
auto t3 = (t1 + t2).eval();
// You can use t3 in another expression. Still no evaluation.
auto t4 = (t3 * 0.2f).exp();
// The value is evaluated when you assign the Operation to a Tensor, using
// an intermediate tensor to represent t3.x
Tensor<float, 3> result = t4;
While in the examples above calling ```eval()``` does not make a difference in
performance, in other cases it can make a huge difference. In the expression
below the ```broadcast()``` expression causes the ```X.maximum()``` expression
to be evaluated many times:
Tensor<...> X ...;
Tensor<...> Y = ((X - X.maximum(depth_dim).reshape(dims2d).broadcast(bcast))
* beta).exp();
Inserting a call to ```eval()``` between the ```maximum()``` and
```reshape()``` calls guarantees that maximum() is only computed once and
greatly speeds-up execution:
Tensor<...> Y =
((X - X.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast))
* beta).exp();
In the other example below, the tensor ```Y``` is both used in the expression
and its assignment. This is an aliasing problem and if the evaluation is not
done in the right order Y will be updated incrementally during the evaluation
resulting in bogus results:
Tensor<...> Y ...;
Y = Y / (Y.sum(depth_dim).reshape(dims2d).broadcast(bcast));
Inserting a call to ```eval()``` between the ```sum()``` and ```reshape()```
expressions ensures that the sum is computed before any updates to ```Y``` are
done.
Y = Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast));
Note that an eval around the full right hand side expression is not needed
because the generated has to compute the i-th value of the right hand side
before assigning it to the left hand side.
However, if you were assigning the expression value to a shuffle of ```Y```
then you would need to force an eval for correctness by adding an ```eval()```
call for the right hand side:
Y.shuffle(...) =
(Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast))).eval();
#### Assigning to a TensorRef.
If you need to access only a few elements from the value of an expression you
can avoid materializing the value in a full tensor by using a TensorRef.
A TensorRef is a small wrapper class for any Eigen Operation. It provides
overloads for the ```()``` operator that let you access individual values in
the expression. TensorRef is convenient, because the Operation themselves do
not provide a way to access individual elements.
// Create a TensorRef for the expression. The expression is not
// evaluated yet.
TensorRef<Tensor<float, 3> > ref = ((t1 + t2) * 0.2f).exp();
// Use "ref" to access individual elements. The expression is evaluated
// on the fly.
float at_0 = ref(0, 0, 0);
cout << ref(0, 1, 0);
Only use TensorRef when you need a subset of the values of the expression.
TensorRef only computes the values you access. However note that if you are
going to access all the values it will be much faster to materialize the
results in a Tensor first.
In some cases, if the full Tensor result would be very large, you may save
memory by accessing it as a TensorRef. But not always. So don't count on it.
### Controlling How Expressions Are Evaluated
The tensor library provides several implementations of the various operations
such as contractions and convolutions. The implementations are optimized for
different environments: single threaded on CPU, multi threaded on CPU, or on a
GPU using cuda. Additional implementations may be added later.
You can choose which implementation to use with the ```device()``` call. If
you do not choose an implementation explicitly the default implementation that
uses a single thread on the CPU is used.
The default implementation has been optimized for recent Intel CPUs, taking
advantage of SSE, AVX, and FMA instructions. Work is ongoing to tune the
library on ARM CPUs. Note that you need to pass compiler-dependent flags
to enable the use of SSE, AVX, and other instructions.
For example, the following code adds two tensors using the default
single-threaded CPU implementation:
Tensor<float, 2> a(30, 40);
Tensor<float, 2> b(30, 40);
Tensor<float, 2> c = a + b;
To choose a different implementation you have to insert a ```device()``` call
before the assignment of the result. For technical C++ reasons this requires
that the Tensor for the result be declared on its own. This means that you
have to know the size of the result.
Eigen::Tensor<float, 2> c(30, 40);
c.device(...) = a + b;
The call to ```device()``` must be the last call on the left of the operator=.
You must pass to the ```device()``` call an Eigen device object. There are
presently three devices you can use: DefaultDevice, ThreadPoolDevice and
GpuDevice.
#### Evaluating With the DefaultDevice
This is exactly the same as not inserting a ```device()``` call.
DefaultDevice my_device;
c.device(my_device) = a + b;
#### Evaluating with a Thread Pool
// Create the Eigen ThreadPoolDevice.
Eigen::ThreadPoolDevice my_device(4 /* number of threads to use */);
// Now just use the device when evaluating expressions.
Eigen::Tensor<float, 2> c(30, 50);
c.device(my_device) = a.contract(b, dot_product_dims);
#### Evaluating On GPU
This is presently a bit more complicated than just using a thread pool device.
You need to create a GPU device but you also need to explicitly allocate the
memory for tensors with cuda.
## API Reference
### Datatypes
In the documentation of the tensor methods and Operation we mention datatypes
that are tensor-type specific:
#### <Tensor-Type>::Dimensions
Acts like an array of ints. Has an ```int size``` attribute, and can be
indexed like an array to access individual values. Used to represent the
dimensions of a tensor. See ```dimensions()```.
#### <Tensor-Type>::Index
Acts like an ```int```. Used for indexing tensors along their dimensions. See
```operator()```, ```dimension()```, and ```size()```.
#### <Tensor-Type>::Scalar
Represents the datatype of individual tensor elements. For example, for a
```Tensor<float>```, ```Scalar``` is the type ```float```. See
```setConstant()```.
#### <Operation>
We use this pseudo type to indicate that a tensor Operation is returned by a
method. We indicate in the text the type and dimensions of the tensor that the
Operation returns after evaluation.
The Operation will have to be evaluated, for example by assigning it to a
tensor, before you can access the values of the resulting tensor. You can also
access the values through a TensorRef.
## Built-in Tensor Methods
These are usual C++ methods that act on tensors immediately. They are not
Operations which provide delayed evaluation of their results. Unless specified
otherwise, all the methods listed below are available on all tensor classes:
Tensor, TensorFixedSize, and TensorMap.
## Metadata
### int NumDimensions
Constant value indicating the number of dimensions of a Tensor. This is also
known as the tensor "rank".
Eigen::Tensor<float, 2> a(3, 4);
cout << "Dims " << a.NumDimensions;
=> Dims 2
### Dimensions dimensions()
Returns an array-like object representing the dimensions of the tensor.
The actual type of the dimensions() result is <Tensor-Type>::Dimensions.
Eigen::Tensor<float, 2> a(3, 4);
const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions();
cout << "Dim size: " << d.size << ", dim 0: " << d[0]
<< ", dim 1: " << d[1];
=> Dim size: 2, dim 0: 3, dim 1: 4
If you use a C++11 compiler, you can use ```auto``` to simplify the code:
const auto& d = a.dimensions();
cout << "Dim size: " << d.size << ", dim 0: " << d[0]
<< ", dim 1: " << d[1];
=> Dim size: 2, dim 0: 3, dim 1: 4
### Index dimension(Index n)
Returns the n-th dimension of the tensor. The actual type of the
```dimension()``` result is ```<Tensor-Type>::Index```, but you can
always use it like an int.
Eigen::Tensor<float, 2> a(3, 4);
int dim1 = a.dimension(1);
cout << "Dim 1: " << dim1;
=> Dim 1: 4
### Index size()
Returns the total number of elements in the tensor. This is the product of all
the tensor dimensions. The actual type of the ```size()``` result is
```<Tensor-Type>::Index```, but you can always use it like an int.
Eigen::Tensor<float, 2> a(3, 4);
cout << "Size: " << a.size();
=> Size: 12
### Getting Dimensions From An Operation
A few operations provide ```dimensions()``` directly,
e.g. ```TensorReslicingOp```. Most operations defer calculating dimensions
until the operation is being evaluated. If you need access to the dimensions
of a deferred operation, you can wrap it in a TensorRef (see Assigning to a
TensorRef above), which provides ```dimensions()``` and ```dimension()``` as
above.
TensorRef can also wrap the plain Tensor types, so this is a useful idiom in
templated contexts where the underlying object could be either a raw Tensor
or some deferred operation (e.g. a slice of a Tensor). In this case, the
template code can wrap the object in a TensorRef and reason about its
dimensionality while remaining agnostic to the underlying type.
## Constructors
### Tensor
Creates a tensor of the specified size. The number of arguments must be equal
to the rank of the tensor. The content of the tensor is not initialized.
Eigen::Tensor<float, 2> a(3, 4);
cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
=> NumRows: 3 NumCols: 4
### TensorFixedSize
Creates a tensor of the specified size. The number of arguments in the Sizes<>
template parameter determines the rank of the tensor. The content of the tensor
is not initialized.
Eigen::TensorFixedSize<float, Sizes<3, 4>> a;
cout << "Rank: " << a.rank() << endl;
=> Rank: 2
cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
=> NumRows: 3 NumCols: 4
### TensorMap
Creates a tensor mapping an existing array of data. The data must not be freed
until the TensorMap is discarded, and the size of the data must be large enough
to accomodate of the coefficients of the tensor.
float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
Eigen::TensorMap<Tensor<float, 2>> a(data, 3, 4);
cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
=> NumRows: 3 NumCols: 4
cout << "a(1, 2): " << a(1, 2) << endl;
=> a(1, 2): 7
## Contents Initialization
When a new Tensor or a new TensorFixedSize are created, memory is allocated to
hold all the tensor elements, but the memory is not initialized. Similarly,
when a new TensorMap is created on top of non-initialized memory the memory its
contents are not initialized.
You can use one of the methods below to initialize the tensor memory. These
have an immediate effect on the tensor and return the tensor itself as a
result. These are not tensor Operations which delay evaluation.
### <Tensor-Type> setConstant(const Scalar& val)
Sets all elements of the tensor to the constant value ```val```. ```Scalar```
is the type of data stored in the tensor. You can pass any value that is
convertible to that type.
Returns the tensor itself in case you want to chain another call.
a.setConstant(12.3f);
cout << "Constant: " << endl << a << endl << endl;
=>
Constant:
12.3 12.3 12.3 12.3
12.3 12.3 12.3 12.3
12.3 12.3 12.3 12.3
Note that ```setConstant()``` can be used on any tensor where the element type
has a copy constructor and an ```operator=()```:
Eigen::Tensor<string, 2> a(2, 3);
a.setConstant("yolo");
cout << "String tensor: " << endl << a << endl << endl;
=>
String tensor:
yolo yolo yolo
yolo yolo yolo
### <Tensor-Type> setZero()
Fills the tensor with zeros. Equivalent to ```setConstant(Scalar(0))```.
Returns the tensor itself in case you want to chain another call.
a.setZero();
cout << "Zeros: " << endl << a << endl << endl;
=>
Zeros:
0 0 0 0
0 0 0 0
0 0 0 0
### <Tensor-Type> setValues({..initializer_list})
Fills the tensor with explicit values specified in a std::initializer_list.
The type of the initializer list depends on the type and rank of the tensor.
If the tensor has rank N, the initializer list must be nested N times. The
most deeply nested lists must contains P scalars of the Tensor type where P is
the size of the last dimension of the Tensor.
For example, for a ```TensorFixedSize<float, 2, 3>``` the initializer list must
contains 2 lists of 3 floats each.
```setValues()``` returns the tensor itself in case you want to chain another
call.
Eigen::Tensor<float, 2> a(2, 3);
a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}});
cout << "a" << endl << a << endl << endl;
=>
a
0 1 2
3 4 5
If a list is too short, the corresponding elements of the tensor will not be
changed. This is valid at each level of nesting. For example the following
code only sets the values of the first row of the tensor.
Eigen::Tensor<int, 2> a(2, 3);
a.setConstant(1000);
a.setValues({{10, 20, 30}});
cout << "a" << endl << a << endl << endl;
=>
a
10 20 30
1000 1000 1000
### <Tensor-Type> setRandom()
Fills the tensor with random values. Returns the tensor itself in case you
want to chain another call.
a.setRandom();
cout << "Random: " << endl << a << endl << endl;
=>
Random:
0.680375 0.59688 -0.329554 0.10794
-0.211234 0.823295 0.536459 -0.0452059
0.566198 -0.604897 -0.444451 0.257742
You can customize ```setRandom()``` by providing your own random number
generator as a template argument:
a.setRandom<MyRandomGenerator>();
Here, ```MyRandomGenerator``` must be a struct with the following member
functions, where Scalar and Index are the same as ```<Tensor-Type>::Scalar```
and ```<Tensor-Type>::Index```.
See ```struct UniformRandomGenerator``` in TensorFunctors.h for an example.
// Custom number generator for use with setRandom().
struct MyRandomGenerator {
// Default and copy constructors. Both are needed
MyRandomGenerator() { }
MyRandomGenerator(const MyRandomGenerator& ) { }
// Return a random value to be used. "element_location" is the
// location of the entry to set in the tensor, it can typically
// be ignored.
Scalar operator()(Eigen::DenseIndex element_location,
Eigen::DenseIndex /*unused*/ = 0) const {
return <randomly generated value of type T>;
}
// Same as above but generates several numbers at a time.
typename internal::packet_traits<Scalar>::type packetOp(
Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const {
return <a packet of randomly generated values>;
}
};
You can also use one of the 2 random number generators that are part of the
tensor library:
* UniformRandomGenerator
* NormalRandomGenerator
## Data Access
The Tensor, TensorFixedSize, and TensorRef classes provide the following
accessors to access the tensor coefficients:
const Scalar& operator()(const array<Index, NumIndices>& indices)
const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
Scalar& operator()(const array<Index, NumIndices>& indices)
Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
The number of indices must be equal to the rank of the tensor. Moreover, these
accessors are not available on tensor expressions. In order to access the
values of a tensor expression, the expression must either be evaluated or
wrapped in a TensorRef.
### Scalar* data() and const Scalar* data() const
Returns a pointer to the storage for the tensor. The pointer is const if the
tensor was const. This allows direct access to the data. The layout of the
data depends on the tensor layout: RowMajor or ColMajor.
This access is usually only needed for special cases, for example when mixing
Eigen Tensor code with other libraries.
Scalar is the type of data stored in the tensor.
Eigen::Tensor<float, 2> a(3, 4);
float* a_data = a.data();
a_data[0] = 123.45f;
cout << "a(0, 0): " << a(0, 0);
=> a(0, 0): 123.45
## Tensor Operations
All the methods documented below return non evaluated tensor ```Operations```.
These can be chained: you can apply another Tensor Operation to the value
returned by the method.
The chain of Operation is evaluated lazily, typically when it is assigned to a
tensor. See "Controlling when Expression are Evaluated" for more details about
their evaluation.
### <Operation> constant(const Scalar& val)
Returns a tensor of the same type and dimensions as the original tensor but
where all elements have the value ```val```.
This is useful, for example, when you want to add or subtract a constant from a
tensor, or multiply every element of a tensor by a scalar.
Eigen::Tensor<float, 2> a(2, 3);
a.setConstant(1.0f);
Eigen::Tensor<float, 2> b = a + a.constant(2.0f);
Eigen::Tensor<float, 2> c = b * b.constant(0.2f);
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
cout << "c" << endl << c << endl << endl;
=>
a
1 1 1
1 1 1
b
3 3 3
3 3 3
c
0.6 0.6 0.6
0.6 0.6 0.6
### <Operation> random()
Returns a tensor of the same type and dimensions as the current tensor
but where all elements have random values.
This is for example useful to add random values to an existing tensor.
The generation of random values can be customized in the same manner
as for ```setRandom()```.
Eigen::Tensor<float, 2> a(2, 3);
a.setConstant(1.0f);
Eigen::Tensor<float, 2> b = a + a.random();
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
1 1 1
1 1 1
b
1.68038 1.5662 1.82329
0.788766 1.59688 0.395103
## Unary Element Wise Operations
All these operations take a single input tensor as argument and return a tensor
of the same type and dimensions as the tensor to which they are applied. The
requested operations are applied to each element independently.
### <Operation> operator-()
Returns a tensor of the same type and dimensions as the original tensor
containing the opposite values of the original tensor.
Eigen::Tensor<float, 2> a(2, 3);
a.setConstant(1.0f);
Eigen::Tensor<float, 2> b = -a;
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
1 1 1
1 1 1
b
-1 -1 -1
-1 -1 -1
### <Operation> sqrt()
Returns a tensor of the same type and dimensions as the original tensor
containing the square roots of the original tensor.
### <Operation> rsqrt()
Returns a tensor of the same type and dimensions as the original tensor
containing the inverse square roots of the original tensor.
### <Operation> square()
Returns a tensor of the same type and dimensions as the original tensor
containing the squares of the original tensor values.
### <Operation> inverse()
Returns a tensor of the same type and dimensions as the original tensor
containing the inverse of the original tensor values.
### <Operation> exp()
Returns a tensor of the same type and dimensions as the original tensor
containing the exponential of the original tensor.
### <Operation> log()
Returns a tensor of the same type and dimensions as the original tensor
containing the natural logarithms of the original tensor.
### <Operation> abs()
Returns a tensor of the same type and dimensions as the original tensor
containing the absolute values of the original tensor.
### <Operation> pow(Scalar exponent)
Returns a tensor of the same type and dimensions as the original tensor
containing the coefficients of the original tensor to the power of the
exponent.
The type of the exponent, Scalar, is always the same as the type of the
tensor coefficients. For example, only integer exponents can be used in
conjuntion with tensors of integer values.
You can use cast() to lift this restriction. For example this computes
cubic roots of an int Tensor:
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 1, 8}, {27, 64, 125}});
Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0);
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
0 1 8
27 64 125
b
0 1 2
3 4 5
### <Operation> operator * (Scalar scale)
Multiplies all the coefficients of the input tensor by the provided scale.
### <Operation> cwiseMax(Scalar threshold)
TODO
### <Operation> cwiseMin(Scalar threshold)
TODO
### <Operation> unaryExpr(const CustomUnaryOp& func)
TODO
## Binary Element Wise Operations
These operations take two input tensors as arguments. The 2 input tensors should
be of the same type and dimensions. The result is a tensor of the same
dimensions as the tensors to which they are applied, and unless otherwise
specified it is also of the same type. The requested operations are applied to
each pair of elements independently.
### <Operation> operator+(const OtherDerived& other)
Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise sums of the inputs.
### <Operation> operator-(const OtherDerived& other)
Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise differences of the inputs.
### <Operation> operator*(const OtherDerived& other)
Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise products of the inputs.
### <Operation> operator/(const OtherDerived& other)
Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise quotients of the inputs.
This operator is not supported for integer types.
### <Operation> cwiseMax(const OtherDerived& other)
Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise maximums of the inputs.
### <Operation> cwiseMin(const OtherDerived& other)
Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise mimimums of the inputs.
### <Operation> Logical operators
The following logical operators are supported as well:
* operator&&(const OtherDerived& other)
* operator||(const OtherDerived& other)
* operator<(const OtherDerived& other)
* operator<=(const OtherDerived& other)
* operator>(const OtherDerived& other)
* operator>=(const OtherDerived& other)
* operator==(const OtherDerived& other)
* operator!=(const OtherDerived& other)
They all return a tensor of boolean values.
## Selection (select(const ThenDerived& thenTensor, const ElseDerived& elseTensor)
Selection is a coefficient-wise ternary operator that is the tensor equivalent
to the if-then-else operation.
Tensor<bool, 3> if = ...;
Tensor<float, 3> then = ...;
Tensor<float, 3> else = ...;
Tensor<float, 3> result = if.select(then, else);
The 3 arguments must be of the same dimensions, which will also be the dimension
of the result. The 'if' tensor must be of type boolean, the 'then' and the
'else' tensor must be of the same type, which will also be the type of the
result.
Each coefficient in the result is equal to the corresponding coefficient in the
'then' tensor if the corresponding value in the 'if' tensor is true. If not, the
resulting coefficient will come from the 'else' tensor.
## Contraction
Tensor *contractions* are a generalization of the matrix product to the
multidimensional case.
// Create 2 matrices using tensors of rank 2
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{1, 2, 3}, {6, 5, 4}});
Eigen::Tensor<int, 2> b(3, 2);
a.setValues({{1, 2}, {4, 5}, {5, 6}});
// Compute the traditional matrix product
Eigen::array<Eigen::IndexPair<int>, 1> product_dims = { Eigen::IndexPair(1, 0) };
Eigen::Tensor<int, 2> AB = a.contract(b, product_dims);
// Compute the product of the transpose of the matrices
Eigen::array<Eigen::IndexPair<int>, 1> transpose_product_dims = { Eigen::IndexPair(0, 1) };
Eigen::Tensor<int, 2> AtBt = a.contract(b, transposed_product_dims);
// Contraction to scalar value using a ouble contraction
// First coordinate of both tensors are contracted as well as both second coordinates
Eigen::array<Eigen::IndexPair<int>, 2> double_contraction_product_dims = { Eigen::IndexPair<int>(0, 0), Eigen::IndexPair<int>(1, 1) };
Eigen::Tensor<int, 0> AdoubleontractedA = a.contract(a, double_contraction_product_dims);
// Extracting the scalar value of the tensor contraction for further usage
int value = AdoublecontractedA(0);
## Reduction Operations
A *Reduction* operation returns a tensor with fewer dimensions than the
original tensor. The values in the returned tensor are computed by applying a
*reduction operator* to slices of values from the original tensor. You specify
the dimensions along which the slices are made.
The Eigen Tensor library provides a set of predefined reduction operators such
as ```maximum()``` and ```sum()``` and lets you define additional operators by
implementing a few methods from a reductor template.
### Reduction Dimensions
All reduction operations take a single parameter of type
```<TensorType>::Dimensions``` which can always be specified as an array of
ints. These are called the "reduction dimensions." The values are the indices
of the dimensions of the input tensor over which the reduction is done. The
parameter can have at most as many element as the rank of the input tensor;
each element must be less than the tensor rank, as it indicates one of the
dimensions to reduce.
Each dimension of the input tensor should occur at most once in the reduction
dimensions as the implementation does not remove duplicates.
The order of the values in the reduction dimensions does not affect the
results, but the code may execute faster if you list the dimensions in
increasing order.
Example: Reduction along one dimension.
// Create a tensor of 2 dimensions
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{1, 2, 3}, {6, 5, 4}});
// Reduce it along the second dimension (1)...
Eigen::array<int, 1> dims({1 /* dimension to reduce */});
// ...using the "maximum" operator.
// The result is a tensor with one dimension. The size of
// that dimension is the same as the first (non-reduced) dimension of a.
Eigen::Tensor<int, 1> b = a.maximum(dims);
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
1 2 3
6 5 4
b
3
6
Example: Reduction along two dimensions.
Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4);
a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
{7.0f, 6.0f, 5.0f, 4.0f},
{8.0f, 9.0f, 10.0f, 11.0f}},
{{12.0f, 13.0f, 14.0f, 15.0f},
{19.0f, 18.0f, 17.0f, 16.0f},
{20.0f, 21.0f, 22.0f, 23.0f}}});
// The tensor a has 3 dimensions. We reduce along the
// first 2, resulting in a tensor with a single dimension
// of size 4 (the last dimension of a.)
// Note that we pass the array of reduction dimensions
// directly to the maximum() call.
Eigen::Tensor<float, 1, Eigen::ColMajor> b =
a.maximum(Eigen::array<int, 2>({0, 1}));
cout << "b" << endl << b << endl << endl;
=>
b
20
21
22
23
#### Reduction along all dimensions
As a special case, if you pass no parameter to a reduction operation the
original tensor is reduced along *all* its dimensions. The result is a
scalar, represented as a zero-dimension tensor.
Eigen::Tensor<float, 3> a(2, 3, 4);
a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
{7.0f, 6.0f, 5.0f, 4.0f},
{8.0f, 9.0f, 10.0f, 11.0f}},
{{12.0f, 13.0f, 14.0f, 15.0f},
{19.0f, 18.0f, 17.0f, 16.0f},
{20.0f, 21.0f, 22.0f, 23.0f}}});
// Reduce along all dimensions using the sum() operator.
Eigen::Tensor<float, 0> b = a.sum();
cout << "b" << endl << b << endl << endl;
=>
b
276
### <Operation> sum(const Dimensions& new_dims)
### <Operation> sum()
Reduce a tensor using the sum() operator. The resulting values
are the sum of the reduced values.
### <Operation> mean(const Dimensions& new_dims)
### <Operation> mean()
Reduce a tensor using the mean() operator. The resulting values
are the mean of the reduced values.
### <Operation> maximum(const Dimensions& new_dims)
### <Operation> maximum()
Reduce a tensor using the maximum() operator. The resulting values are the
largest of the reduced values.
### <Operation> minimum(const Dimensions& new_dims)
### <Operation> minimum()
Reduce a tensor using the minimum() operator. The resulting values
are the smallest of the reduced values.
### <Operation> prod(const Dimensions& new_dims)
### <Operation> prod()
Reduce a tensor using the prod() operator. The resulting values
are the product of the reduced values.
### <Operation> all(const Dimensions& new_dims)
### <Operation> all()
Reduce a tensor using the all() operator. Casts tensor to bool and then checks
whether all elements are true. Runs through all elements rather than
short-circuiting, so may be significantly inefficient.
### <Operation> any(const Dimensions& new_dims)
### <Operation> any()
Reduce a tensor using the any() operator. Casts tensor to bool and then checks
whether any element is true. Runs through all elements rather than
short-circuiting, so may be significantly inefficient.
### <Operation> reduce(const Dimensions& new_dims, const Reducer& reducer)
Reduce a tensor using a user-defined reduction operator. See ```SumReducer```
in TensorFunctors.h for information on how to implement a reduction operator.
## Trace
A *Trace* operation returns a tensor with fewer dimensions than the original
tensor. It returns a tensor whose elements are the sum of the elements of the
original tensor along the main diagonal for a list of specified dimensions, the
"trace dimensions". Similar to the ```Reduction Dimensions```, the trace dimensions
are passed as an input parameter to the operation, are of type ```<TensorType>::Dimensions```
, and have the same requirements when passed as an input parameter. In addition,
the trace dimensions must have the same size.
Example: Trace along 2 dimensions.
// Create a tensor of 3 dimensions
Eigen::Tensor<int, 3> a(2, 2, 3);
a.setValues({{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}});
// Specify the dimensions along which the trace will be computed.
// In this example, the trace can only be computed along the dimensions
// with indices 0 and 1
Eigen::array<int, 2> dims({0, 1});
// The output tensor contains all but the trace dimensions.
Tensor<int, 1> a_trace = a.trace(dims);
cout << "a_trace:" << endl;
cout << a_trace << endl;
=>
a_trace:
11
13
15
### <Operation> trace(const Dimensions& new_dims)
### <Operation> trace()
As a special case, if no parameter is passed to the operation, trace is computed
along *all* dimensions of the input tensor.
Example: Trace along all dimensions.
// Create a tensor of 3 dimensions, with all dimensions having the same size.
Eigen::Tensor<int, 3> a(3, 3, 3);
a.setValues({{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
{{10, 11, 12}, {13, 14, 15}, {16, 17, 18}},
{{19, 20, 21}, {22, 23, 24}, {25, 26, 27}}});
// Result is a zero dimension tensor
Tensor<int, 0> a_trace = a.trace();
cout<<"a_trace:"<<endl;
cout<<a_trace<<endl;
=>
a_trace:
42
## Scan Operations
A *Scan* operation returns a tensor with the same dimensions as the original
tensor. The operation performs an inclusive scan along the specified
axis, which means it computes a running total along the axis for a given
reduction operation.
If the reduction operation corresponds to summation, then this computes the
prefix sum of the tensor along the given axis.
Example:
dd a comment to this line
// Create a tensor of 2 dimensions
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{1, 2, 3}, {4, 5, 6}});
// Scan it along the second dimension (1) using summation
Eigen::Tensor<int, 2> b = a.cumsum(1);
// The result is a tensor with the same size as the input
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
1 2 3
6 5 4
b
1 3 6
4 9 15
### <Operation> cumsum(const Index& axis)
Perform a scan by summing consecutive entries.
### <Operation> cumprod(const Index& axis)
Perform a scan by multiplying consecutive entries.
## Convolutions
### <Operation> convolve(const Kernel& kernel, const Dimensions& dims)
Returns a tensor that is the output of the convolution of the input tensor with the kernel,
along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor
which were part of the convolution will be reduced by the formula:
output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size).
The dimension sizes for dimensions that were not part of the convolution will remain the same.
Performance of the convolution can depend on the length of the stride(s) of the input tensor dimension(s) along which the
convolution is computed (the first dimension has the shortest stride for ColMajor, whereas RowMajor's shortest stride is
for the last dimension).
// Compute convolution along the second and third dimension.
Tensor<float, 4, DataLayout> input(3, 3, 7, 11);
Tensor<float, 2, DataLayout> kernel(2, 2);
Tensor<float, 4, DataLayout> output(3, 2, 6, 11);
input.setRandom();
kernel.setRandom();
Eigen::array<ptrdiff_t, 2> dims({1, 2}); // Specify second and third dimension for convolution.
output = input.convolve(kernel, dims);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 6; ++k) {
for (int l = 0; l < 11; ++l) {
const float result = output(i,j,k,l);
const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
input(i,j+1,k+0,l) * kernel(1,0) +
input(i,j+0,k+1,l) * kernel(0,1) +
input(i,j+1,k+1,l) * kernel(1,1);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
## Geometrical Operations
These operations return a Tensor with different dimensions than the original
Tensor. They can be used to access slices of tensors, see them with different
dimensions, or pad tensors with additional data.
### <Operation> reshape(const Dimensions& new_dims)
Returns a view of the input tensor that has been reshaped to the specified
new dimensions. The argument new_dims is an array of Index values. The
rank of the resulting tensor is equal to the number of elements in new_dims.
The product of all the sizes in the new dimension array must be equal to
the number of elements in the input tensor.
// Increase the rank of the input tensor by introducing a new dimension
// of size 1.
Tensor<float, 2> input(7, 11);
array<int, 3> three_dims{{7, 11, 1}};
Tensor<float, 3> result = input.reshape(three_dims);
// Decrease the rank of the input tensor by merging 2 dimensions;
array<int, 1> one_dim{{7 * 11}};
Tensor<float, 1> result = input.reshape(one_dim);
This operation does not move any data in the input tensor, so the resulting
contents of a reshaped Tensor depend on the data layout of the original Tensor.
For example this is what happens when you ```reshape()``` a 2D ColMajor tensor
to one dimension:
Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim);
cout << "b" << endl << b << endl;
=>
b
0
300
100
400
200
500
This is what happens when the 2D Tensor is RowMajor:
Eigen::Tensor<float, 2, Eigen::RowMajor> a(2, 3);
a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
Eigen::Tensor<float, 1, Eigen::RowMajor> b = a.reshape(one_dim);
cout << "b" << endl << b << endl;
=>
b
0
100
200
300
400
500
The reshape operation is a lvalue. In other words, it can be used on the left
side of the assignment operator.
The previous example can be rewritten as follow:
Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
Eigen::array<Eigen::DenseIndex, 2> two_dim({2, 3});
Eigen::Tensor<float, 1, Eigen::ColMajor> b(6);
b.reshape(two_dim) = a;
cout << "b" << endl << b << endl;
=>
b
0
300
100
400
200
500
Note that "b" itself was not reshaped but that instead the assignment is done to
the reshape view of b.
### <Operation> shuffle(const Shuffle& shuffle)
Returns a copy of the input tensor whose dimensions have been
reordered according to the specified permutation. The argument shuffle
is an array of Index values. Its size is the rank of the input
tensor. It must contain a permutation of 0, 1, ..., rank - 1. The i-th
dimension of the output tensor equals to the size of the shuffle[i]-th
dimension of the input tensor. For example:
// Shuffle all dimensions to the left by 1.
Tensor<float, 3> input(20, 30, 50);
// ... set some values in input.
Tensor<float, 3> output = input.shuffle({1, 2, 0})
eigen_assert(output.dimension(0) == 30);
eigen_assert(output.dimension(1) == 50);
eigen_assert(output.dimension(2) == 20);
Indices into the output tensor are shuffled accordingly to formulate
indices into the input tensor. For example, one can assert in the above
code snippet that:
eigen_assert(output(3, 7, 11) == input(11, 3, 7));
In general, one can assert that
eigen_assert(output(..., indices[shuffle[i]], ...) ==
input(..., indices[i], ...))
The shuffle operation results in a lvalue, which means that it can be assigned
to. In other words, it can be used on the left side of the assignment operator.
Let's rewrite the previous example to take advantage of this feature:
// Shuffle all dimensions to the left by 1.
Tensor<float, 3> input(20, 30, 50);
// ... set some values in input.
Tensor<float, 3> output(30, 50, 20);
output.shuffle({2, 0, 1}) = input;
### <Operation> stride(const Strides& strides)
Returns a view of the input tensor that strides (skips stride-1
elements) along each of the dimensions. The argument strides is an
array of Index values. The dimensions of the resulting tensor are
ceil(input_dimensions[i] / strides[i]).
For example this is what happens when you ```stride()``` a 2D tensor:
Eigen::Tensor<int, 2> a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}});
Eigen::array<Eigen::DenseIndex, 2> strides({3, 2});
Eigen::Tensor<int, 2> b = a.stride(strides);
cout << "b" << endl << b << endl;
=>
b
0 200
900 1100
It is possible to assign a tensor to a stride:
Tensor<float, 3> input(20, 30, 50);
// ... set some values in input.
Tensor<float, 3> output(40, 90, 200);
output.stride({2, 3, 4}) = input;
### <Operation> slice(const StartIndices& offsets, const Sizes& extents)
Returns a sub-tensor of the given tensor. For each dimension i, the slice is
made of the coefficients stored between offset[i] and offset[i] + extents[i] in
the input tensor.
Eigen::Tensor<int, 2> a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500},
{600, 700, 800}, {900, 1000, 1100}});
Eigen::array<int, 2> offsets = {1, 0};
Eigen::array<int, 2> extents = {2, 2};
Eigen::Tensor<int, 1> slice = a.slice(offsets, extents);
cout << "a" << endl << a << endl;
=>
a
0 100 200
300 400 500
600 700 800
900 1000 1100
cout << "slice" << endl << slice << endl;
=>
slice
300 400
600 700
### <Operation> chip(const Index offset, const Index dim)
A chip is a special kind of slice. It is the subtensor at the given offset in
the dimension dim. The returned tensor has one fewer dimension than the input
tensor: the dimension dim is removed.
For example, a matrix chip would be either a row or a column of the input
matrix.
Eigen::Tensor<int, 2> a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500},
{600, 700, 800}, {900, 1000, 1100}});
Eigen::Tensor<int, 1> row_3 = a.chip(2, 0);
Eigen::Tensor<int, 1> col_2 = a.chip(1, 1);
cout << "a" << endl << a << endl;
=>
a
0 100 200
300 400 500
600 700 800
900 1000 1100
cout << "row_3" << endl << row_3 << endl;
=>
row_3
600 700 800
cout << "col_2" << endl << col_2 << endl;
=>
col_2
100 400 700 1000
It is possible to assign values to a tensor chip since the chip operation is a
lvalue. For example:
Eigen::Tensor<int, 1> a(3);
a.setValues({{100, 200, 300}});
Eigen::Tensor<int, 2> b(2, 3);
b.setZero();
b.chip(0, 0) = a;
cout << "a" << endl << a << endl;
=>
a
100
200
300
cout << "b" << endl << b << endl;
=>
b
100 200 300
0 0 0
### <Operation> reverse(const ReverseDimensions& reverse)
Returns a view of the input tensor that reverses the order of the coefficients
along a subset of the dimensions. The argument reverse is an array of boolean
values that indicates whether or not the order of the coefficients should be
reversed along each of the dimensions. This operation preserves the dimensions
of the input tensor.
For example this is what happens when you ```reverse()``` the first dimension
of a 2D tensor:
Eigen::Tensor<int, 2> a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500},
{600, 700, 800}, {900, 1000, 1100}});
Eigen::array<bool, 2> reverse({true, false});
Eigen::Tensor<int, 2> b = a.reverse(reverse);
cout << "a" << endl << a << endl << "b" << endl << b << endl;
=>
a
0 100 200
300 400 500
600 700 800
900 1000 1100
b
900 1000 1100
600 700 800
300 400 500
0 100 200
### <Operation> broadcast(const Broadcast& broadcast)
Returns a view of the input tensor in which the input is replicated one to many
times.
The broadcast argument specifies how many copies of the input tensor need to be
made in each of the dimensions.
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 100, 200}, {300, 400, 500}});
Eigen::array<int, 2> bcast({3, 2});
Eigen::Tensor<int, 2> b = a.broadcast(bcast);
cout << "a" << endl << a << endl << "b" << endl << b << endl;
=>
a
0 100 200
300 400 500
b
0 100 200 0 100 200
300 400 500 300 400 500
0 100 200 0 100 200
300 400 500 300 400 500
0 100 200 0 100 200
300 400 500 300 400 500
### <Operation> concatenate(const OtherDerived& other, Axis axis)
TODO
### <Operation> pad(const PaddingDimensions& padding)
Returns a view of the input tensor in which the input is padded with zeros.
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 100, 200}, {300, 400, 500}});
Eigen::array<pair<int, int>, 2> paddings;
paddings[0] = make_pair(0, 1);
paddings[1] = make_pair(2, 3);
Eigen::Tensor<int, 2> b = a.pad(paddings);
cout << "a" << endl << a << endl << "b" << endl << b << endl;
=>
a
0 100 200
300 400 500
b
0 0 0 0
0 0 0 0
0 100 200 0
300 400 500 0
0 0 0 0
0 0 0 0
0 0 0 0
### <Operation> extract_patches(const PatchDims& patch_dims)
Returns a tensor of coefficient patches extracted from the input tensor, where
each patch is of dimension specified by 'patch_dims'. The returned tensor has
one greater dimension than the input tensor, which is used to index each patch.
The patch index in the output tensor depends on the data layout of the input
tensor: the patch index is the last dimension ColMajor layout, and the first
dimension in RowMajor layout.
For example, given the following input tensor:
Eigen::Tensor<float, 2, DataLayout> tensor(3,4);
tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f},
{4.0f, 5.0f, 6.0f, 7.0f},
{8.0f, 9.0f, 10.0f, 11.0f}});
cout << "tensor: " << endl << tensor << endl;
=>
tensor:
0 1 2 3
4 5 6 7
8 9 10 11
Six 2x2 patches can be extracted and indexed using the following code:
Eigen::Tensor<float, 3, DataLayout> patch;
Eigen::array<ptrdiff_t, 2> patch_dims;
patch_dims[0] = 2;
patch_dims[1] = 2;
patch = tensor.extract_patches(patch_dims);
for (int k = 0; k < 6; ++k) {
cout << "patch index: " << k << endl;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (DataLayout == ColMajor) {
cout << patch(i, j, k) << " ";
} else {
cout << patch(k, i, j) << " ";
}
}
cout << endl;
}
}
This code results in the following output when the data layout is ColMajor:
patch index: 0
0 1
4 5
patch index: 1
4 5
8 9
patch index: 2
1 2
5 6
patch index: 3
5 6
9 10
patch index: 4
2 3
6 7
patch index: 5
6 7
10 11
This code results in the following output when the data layout is RowMajor:
(NOTE: the set of patches is the same as in ColMajor, but are indexed differently).
patch index: 0
0 1
4 5
patch index: 1
1 2
5 6
patch index: 2
2 3
6 7
patch index: 3
4 5
8 9
patch index: 4
5 6
9 10
patch index: 5
6 7
10 11
### <Operation> extract_image_patches(const Index patch_rows, const Index patch_cols,
const Index row_stride, const Index col_stride,
const PaddingType padding_type)
Returns a tensor of coefficient image patches extracted from the input tensor,
which is expected to have dimensions ordered as follows (depending on the data
layout of the input tensor, and the number of additional dimensions 'N'):
*) ColMajor
1st dimension: channels (of size d)
2nd dimension: rows (of size r)
3rd dimension: columns (of size c)
4th-Nth dimension: time (for video) or batch (for bulk processing).
*) RowMajor (reverse order of ColMajor)
1st-Nth dimension: time (for video) or batch (for bulk processing).
N+1'th dimension: columns (of size c)
N+2'th dimension: rows (of size r)
N+3'th dimension: channels (of size d)
The returned tensor has one greater dimension than the input tensor, which is
used to index each patch. The patch index in the output tensor depends on the
data layout of the input tensor: the patch index is the 4'th dimension in
ColMajor layout, and the 4'th from the last dimension in RowMajor layout.
For example, given the following input tensor with the following dimension
sizes:
*) depth: 2
*) rows: 3
*) columns: 5
*) batch: 7
Tensor<float, 4> tensor(2,3,5,7);
Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout();
2x2 image patches can be extracted and indexed using the following code:
*) 2D patch: ColMajor (patch indexed by second-to-last dimension)
Tensor<float, 5> twod_patch;
twod_patch = tensor.extract_image_patches<2, 2>();
// twod_patch.dimension(0) == 2
// twod_patch.dimension(1) == 2
// twod_patch.dimension(2) == 2
// twod_patch.dimension(3) == 3*5
// twod_patch.dimension(4) == 7
*) 2D patch: RowMajor (patch indexed by the second dimension)
Tensor<float, 5, RowMajor> twod_patch_row_major;
twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
// twod_patch_row_major.dimension(0) == 7
// twod_patch_row_major.dimension(1) == 3*5
// twod_patch_row_major.dimension(2) == 2
// twod_patch_row_major.dimension(3) == 2
// twod_patch_row_major.dimension(4) == 2
## Special Operations
### <Operation> cast<T>()
Returns a tensor of type T with the same dimensions as the original tensor.
The returned tensor contains the values of the original tensor converted to
type T.
Eigen::Tensor<float, 2> a(2, 3);
Eigen::Tensor<int, 2> b = a.cast<int>();
This can be useful for example if you need to do element-wise division of
Tensors of integers. This is not currently supported by the Tensor library
but you can easily cast the tensors to floats to do the division:
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 1, 2}, {3, 4, 5}});
Eigen::Tensor<int, 2> b =
(a.cast<float>() / a.constant(2).cast<float>()).cast<int>();
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
0 1 2
3 4 5
b
0 0 1
1 2 2
### <Operation> eval()
TODO
## Representation of scalar values
Scalar values are often represented by tensors of size 1 and rank 0.For example
Tensor<T, N>::maximum() currently returns a Tensor<T, 0>. Similarly, the inner
product of 2 1d tensors (through contractions) returns a 0d tensor.
## Limitations
* The number of tensor dimensions is currently limited to 250 when using a
compiler that supports cxx11. It is limited to only 5 for older compilers.
* The IndexList class requires a cxx11 compliant compiler. You can use an
array of indices instead if you don't have access to a modern compiler.
* On GPUs only floating point values are properly tested and optimized for.
* Complex and integer values are known to be broken on GPUs. If you try to use
them you'll most likely end up triggering a static assertion failure such as
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|