aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/triangular.cpp
blob: 1e078252328f93e87b9253c1355ce70b76c520ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// This file is triangularView of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"

template<typename MatrixType> void triangular(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  int rows = m.rows();
  int cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols),
             m4(rows, cols),
             r1(rows, cols),
             r2(rows, cols),
             mzero = MatrixType::Zero(rows, cols),
             mones = MatrixType::Ones(rows, cols),
             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
                              ::Identity(rows, rows),
             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
                              ::Random(rows, rows);
  VectorType v1 = VectorType::Random(rows),
             v2 = VectorType::Random(rows),
             vzero = VectorType::Zero(rows);

  MatrixType m1up = m1.template triangularView<Eigen::UpperTriangular>();
  MatrixType m2up = m2.template triangularView<Eigen::UpperTriangular>();

  if (rows*cols>1)
  {
    VERIFY(m1up.isUpperTriangular());
    VERIFY(m2up.transpose().isLowerTriangular());
    VERIFY(!m2.isLowerTriangular());
  }

//   VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);

  // test overloaded operator+=
  r1.setZero();
  r2.setZero();
  r1.template triangularView<Eigen::UpperTriangular>() +=  m1;
  r2 += m1up;
  VERIFY_IS_APPROX(r1,r2);

  // test overloaded operator=
  m1.setZero();
  m1.template triangularView<Eigen::UpperTriangular>() = m2.transpose() + m2;
  m3 = m2.transpose() + m2;
  VERIFY_IS_APPROX(m3.template triangularView<Eigen::LowerTriangular>().transpose().toDense(), m1);

  // test overloaded operator=
  m1.setZero();
  m1.template triangularView<Eigen::LowerTriangular>() = m2.transpose() + m2;
  VERIFY_IS_APPROX(m3.template triangularView<Eigen::LowerTriangular>().toDense(), m1);

  m1 = MatrixType::Random(rows, cols);
  for (int i=0; i<rows; ++i)
    while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>();

  Transpose<MatrixType> trm4(m4);
  // test back and forward subsitution with a vector as the rhs
  m3 = m1.template triangularView<Eigen::UpperTriangular>();
  VERIFY(v2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Eigen::LowerTriangular>().solve(v2)), largerEps));
  m3 = m1.template triangularView<Eigen::LowerTriangular>();
  VERIFY(v2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Eigen::UpperTriangular>().solve(v2)), largerEps));
  m3 = m1.template triangularView<Eigen::UpperTriangular>();
  VERIFY(v2.isApprox(m3 * (m1.template triangularView<Eigen::UpperTriangular>().solve(v2)), largerEps));
  m3 = m1.template triangularView<Eigen::LowerTriangular>();
  VERIFY(v2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Eigen::LowerTriangular>().solve(v2)), largerEps));

  // test back and forward subsitution with a matrix as the rhs
  m3 = m1.template triangularView<Eigen::UpperTriangular>();
  VERIFY(m2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Eigen::LowerTriangular>().solve(m2)), largerEps));
  m3 = m1.template triangularView<Eigen::LowerTriangular>();
  VERIFY(m2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Eigen::UpperTriangular>().solve(m2)), largerEps));
  m3 = m1.template triangularView<Eigen::UpperTriangular>();
  VERIFY(m2.isApprox(m3 * (m1.template triangularView<Eigen::UpperTriangular>().solve(m2)), largerEps));
  m3 = m1.template triangularView<Eigen::LowerTriangular>();
  VERIFY(m2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Eigen::LowerTriangular>().solve(m2)), largerEps));

  // check M * inv(L) using in place API
  m4 = m3;
  m3.transpose().template triangularView<Eigen::UpperTriangular>().solveInPlace(trm4);
  VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));

  // check M * inv(U) using in place API
  m3 = m1.template triangularView<Eigen::UpperTriangular>();
  m4 = m3;
  m3.transpose().template triangularView<Eigen::LowerTriangular>().solveInPlace(trm4);
  VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));

  // check solve with unit diagonal
  m3 = m1.template triangularView<Eigen::UnitUpperTriangular>();
  VERIFY(m2.isApprox(m3 * (m1.template triangularView<Eigen::UnitUpperTriangular>().solve(m2)), largerEps));

//   VERIFY((  m1.template triangularView<Eigen::UpperTriangular>()
//           * m2.template triangularView<Eigen::UpperTriangular>()).isUpperTriangular());

  // test swap
  m1.setOnes();
  m2.setZero();
  m2.template triangularView<Eigen::UpperTriangular>().swap(m1);
  m3.setZero();
  m3.template triangularView<Eigen::UpperTriangular>().setOnes();
  VERIFY_IS_APPROX(m2,m3);

}

void test_triangular()
{
  for(int i = 0; i < g_repeat ; i++) {
    CALL_SUBTEST( triangular(Matrix<float, 1, 1>()) );
    CALL_SUBTEST( triangular(Matrix<float, 2, 2>()) );
    CALL_SUBTEST( triangular(Matrix3d()) );
    CALL_SUBTEST( triangular(MatrixXcf(4, 4)) );
    CALL_SUBTEST( triangular(Matrix<std::complex<float>,8, 8>()) );
    CALL_SUBTEST( triangular(MatrixXcd(17,17)) );
    CALL_SUBTEST( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) );
  }
}