aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/svd_common.h
blob: bd62edcc8442c8375e6551c4b4e449f3d83581bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef SVD_DEFAULT
#error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
#endif

#ifndef SVD_FOR_MIN_NORM
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
#endif

#include "svd_fill.h"
#include "solverbase.h"

// Check that the matrix m is properly reconstructed and that the U and V factors are unitary
// The SVD must have already been computed.
template<typename SvdType, typename MatrixType>
void svd_check_full(const MatrixType& m, const SvdType& svd)
{
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;

  MatrixType sigma = MatrixType::Zero(rows,cols);
  sigma.diagonal() = svd.singularValues().template cast<Scalar>();
  MatrixUType u = svd.matrixU();
  MatrixVType v = svd.matrixV();
  RealScalar scaling = m.cwiseAbs().maxCoeff();
  if(scaling<(std::numeric_limits<RealScalar>::min)())
  {
    VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
  }
  else
  {
    VERIFY_IS_APPROX(m/scaling, u * (sigma/scaling) * v.adjoint());
  }
  VERIFY_IS_UNITARY(u);
  VERIFY_IS_UNITARY(v);
}

// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
template<typename SvdType, typename MatrixType>
void svd_compare_to_full(const MatrixType& m,
                         unsigned int computationOptions,
                         const SvdType& referenceSvd)
{
  typedef typename MatrixType::RealScalar RealScalar;
  Index rows = m.rows();
  Index cols = m.cols();
  Index diagSize = (std::min)(rows, cols);
  RealScalar prec = test_precision<RealScalar>();

  SvdType svd(m, computationOptions);

  VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
  
  if(computationOptions & (ComputeFullV|ComputeThinV))
  {
    VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
    VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
                      referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
  }
  
  if(computationOptions & (ComputeFullU|ComputeThinU))
  {
    VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
    VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
                      referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint());
  }
  
  // The following checks are not critical.
  // For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used
  // and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
  ++g_test_level;
  if(computationOptions & ComputeFullU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
  if(computationOptions & ComputeThinU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
  if(computationOptions & ComputeFullV)  VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
  if(computationOptions & ComputeThinV)  VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
  --g_test_level;
}

//
template<typename SvdType, typename MatrixType>
void svd_least_square(const MatrixType& m, unsigned int computationOptions)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
  typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;

  RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
  SvdType svd(m, computationOptions);

       if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
  else if(internal::is_same<RealScalar,float>::value)  svd.setThreshold(2e-4);

  SolutionType x = svd.solve(rhs);
   
  RealScalar residual = (m*x-rhs).norm();
  RealScalar rhs_norm = rhs.norm();
  if(!test_isMuchSmallerThan(residual,rhs.norm()))
  {
    // ^^^ If the residual is very small, then we have an exact solution, so we are already good.
    
    // evaluate normal equation which works also for least-squares solutions
    if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size())
    {
      using std::sqrt;
      // This test is not stable with single precision.
      // This is probably because squaring m signicantly affects the precision.      
      if(internal::is_same<RealScalar,float>::value) ++g_test_level;
      
      VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs);
      
      if(internal::is_same<RealScalar,float>::value) --g_test_level;
    }
    
    // Check that there is no significantly better solution in the neighborhood of x
    for(Index k=0;k<x.rows();++k)
    {
      using std::abs;
      
      SolutionType y(x);
      y.row(k) = (RealScalar(1)+2*NumTraits<RealScalar>::epsilon())*x.row(k);
      RealScalar residual_y = (m*y-rhs).norm();
      VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
      if(internal::is_same<RealScalar,float>::value) ++g_test_level;
      VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
      if(internal::is_same<RealScalar,float>::value) --g_test_level;
      
      y.row(k) = (RealScalar(1)-2*NumTraits<RealScalar>::epsilon())*x.row(k);
      residual_y = (m*y-rhs).norm();
      VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
      if(internal::is_same<RealScalar,float>::value) ++g_test_level;
      VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
      if(internal::is_same<RealScalar,float>::value) --g_test_level;
    }
  }
}

// check minimal norm solutions, the inoput matrix m is only used to recover problem size
template<typename MatrixType>
void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
{
  typedef typename MatrixType::Scalar Scalar;
  Index cols = m.cols();

  enum {
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;

  // generate a full-rank m x n problem with m<n
  enum {
    RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
    RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
  };
  typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
  typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
  typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
  Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
  MatrixType2 m2(rank,cols);
  int guard = 0;
  do {
    m2.setRandom();
  } while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
  VERIFY(guard<10);

  RhsType2 rhs2 = RhsType2::Random(rank);
  // use QR to find a reference minimal norm solution
  HouseholderQR<MatrixType2T> qr(m2.adjoint());
  Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
  tmp.conservativeResize(cols);
  tmp.tail(cols-rank).setZero();
  SolutionType x21 = qr.householderQ() * tmp;
  // now check with SVD
  SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
  SolutionType x22 = svd2.solve(rhs2);
  VERIFY_IS_APPROX(m2*x21, rhs2);
  VERIFY_IS_APPROX(m2*x22, rhs2);
  VERIFY_IS_APPROX(x21, x22);

  // Now check with a rank deficient matrix
  typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
  typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
  Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
  Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
  MatrixType3 m3 = C * m2;
  RhsType3 rhs3 = C * rhs2;
  SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
  SolutionType x3 = svd3.solve(rhs3);
  VERIFY_IS_APPROX(m3*x3, rhs3);
  VERIFY_IS_APPROX(m3*x21, rhs3);
  VERIFY_IS_APPROX(m2*x3, rhs2);
  VERIFY_IS_APPROX(x21, x3);
}

template<typename MatrixType, typename SolverType>
void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
    Index rows, cols, cols2;

    rows = m.rows();
    cols = m.cols();

    if(MatrixType::ColsAtCompileTime==Dynamic)
    {
      cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
    }
    else
    {
      cols2 = cols;
    }
    typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType;
    check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
}

// Check full, compare_to_full, least_square, and min_norm for all possible compute-options
template<typename SvdType, typename MatrixType>
void svd_test_all_computation_options(const MatrixType& m, bool full_only)
{
//   if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
//     return;
  STATIC_CHECK(( internal::is_same<typename SvdType::StorageIndex,int>::value ));

  SvdType fullSvd(m, ComputeFullU|ComputeFullV);
  CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
  CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
  CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
  
  #if defined __INTEL_COMPILER
  // remark #111: statement is unreachable
  #pragma warning disable 111
  #endif

  svd_test_solvers(m, fullSvd);

  if(full_only)
    return;

  CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
  CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
  CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));

  if (MatrixType::ColsAtCompileTime == Dynamic) {
    // thin U/V are only available with dynamic number of columns
    CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( svd_compare_to_full(m,              ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU             , fullSvd) ));
    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
    
    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));

    CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
    CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
    CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));

    // test reconstruction
    Index diagSize = (std::min)(m.rows(), m.cols());
    SvdType svd(m, ComputeThinU | ComputeThinV);
    VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
  }
}


// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }

// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }

// This function verifies we don't iterate infinitely on nan/inf values,
// and that info() returns InvalidInput.
template<typename SvdType, typename MatrixType>
void svd_inf_nan()
{
  SvdType svd;
  typedef typename MatrixType::Scalar Scalar;
  Scalar some_inf = Scalar(1) / zero<Scalar>();
  VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
  svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
  VERIFY(svd.info() == InvalidInput);

  Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
  VERIFY(nan != nan);
  svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
  VERIFY(svd.info() == InvalidInput);  

  MatrixType m = MatrixType::Zero(10,10);
  m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
  svd.compute(m, ComputeFullU | ComputeFullV);
  VERIFY(svd.info() == InvalidInput);

  m = MatrixType::Zero(10,10);
  m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
  svd.compute(m, ComputeFullU | ComputeFullV);
  VERIFY(svd.info() == InvalidInput);
  
  // regression test for bug 791
  m.resize(3,3);
  m << 0,    2*NumTraits<Scalar>::epsilon(),  0.5,
       0,   -0.5,                             0,
       nan,  0,                               0;
  svd.compute(m, ComputeFullU | ComputeFullV);
  VERIFY(svd.info() == InvalidInput);
  
  m.resize(4,4);
  m <<  1, 0, 0, 0,
        0, 3, 1, 2e-308,
        1, 0, 1, nan,
        0, nan, nan, 0;
  svd.compute(m, ComputeFullU | ComputeFullV);
  VERIFY(svd.info() == InvalidInput);
}

// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
template<typename>
void svd_underoverflow()
{
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
  Matrix2d M;
  M << -7.90884e-313, -4.94e-324,
                 0, 5.60844e-313;
  SVD_DEFAULT(Matrix2d) svd;
  svd.compute(M,ComputeFullU|ComputeFullV);
  CALL_SUBTEST( svd_check_full(M,svd) );
  
  // Check all 2x2 matrices made with the following coefficients:
  VectorXd value_set(9);
  value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
  Array4i id(0,0,0,0);
  int k = 0;
  do
  {
    M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
    svd.compute(M,ComputeFullU|ComputeFullV);
    CALL_SUBTEST( svd_check_full(M,svd) );

    id(k)++;
    if(id(k)>=value_set.size())
    {
      while(k<3 && id(k)>=value_set.size()) id(++k)++;
      id.head(k).setZero();
      k=0;
    }

  } while((id<int(value_set.size())).all());
  
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
  
  // Check for overflow:
  Matrix3d M3;
  M3 << 4.4331978442502944e+307, -5.8585363752028680e+307,  6.4527017443412964e+307,
        3.7841695601406358e+307,  2.4331702789740617e+306, -3.5235707140272905e+307,
       -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;

  SVD_DEFAULT(Matrix3d) svd3;
  svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
  CALL_SUBTEST( svd_check_full(M3,svd3) );
}

// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)

template<typename MatrixType>
void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
{
  MatrixType M;
  VectorXd value_set(3);
  value_set << 0, 1, -1;
  Array4i id(0,0,0,0);
  int k = 0;
  do
  {
    M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
    
    cb(M,false);
    
    id(k)++;
    if(id(k)>=value_set.size())
    {
      while(k<3 && id(k)>=value_set.size()) id(++k)++;
      id.head(k).setZero();
      k=0;
    }
    
  } while((id<int(value_set.size())).all());
}

template<typename>
void svd_preallocate()
{
  Vector3f v(3.f, 2.f, 1.f);
  MatrixXf m = v.asDiagonal();

  internal::set_is_malloc_allowed(false);
  VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
  SVD_DEFAULT(MatrixXf) svd;
  internal::set_is_malloc_allowed(true);
  svd.compute(m);
  VERIFY_IS_APPROX(svd.singularValues(), v);

  SVD_DEFAULT(MatrixXf) svd2(3,3);
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);
  VERIFY_IS_APPROX(svd2.singularValues(), v);
  VERIFY_RAISES_ASSERT(svd2.matrixU());
  VERIFY_RAISES_ASSERT(svd2.matrixV());
  svd2.compute(m, ComputeFullU | ComputeFullV);
  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);

  SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);
  VERIFY_IS_APPROX(svd2.singularValues(), v);
  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
  internal::set_is_malloc_allowed(false);
  svd2.compute(m, ComputeFullU|ComputeFullV);
  internal::set_is_malloc_allowed(true);
}

template<typename SvdType,typename MatrixType> 
void svd_verify_assert(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
  RhsType rhs(rows);
  SvdType svd;
  VERIFY_RAISES_ASSERT(svd.matrixU())
  VERIFY_RAISES_ASSERT(svd.singularValues())
  VERIFY_RAISES_ASSERT(svd.matrixV())
  VERIFY_RAISES_ASSERT(svd.solve(rhs))
  VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
  VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
  MatrixType a = MatrixType::Zero(rows, cols);
  a.setZero();
  svd.compute(a, 0);
  VERIFY_RAISES_ASSERT(svd.matrixU())
  VERIFY_RAISES_ASSERT(svd.matrixV())
  svd.singularValues();
  VERIFY_RAISES_ASSERT(svd.solve(rhs))
    
  if (ColsAtCompileTime == Dynamic)
  {
    svd.compute(a, ComputeThinU);
    svd.matrixU();
    VERIFY_RAISES_ASSERT(svd.matrixV())
    VERIFY_RAISES_ASSERT(svd.solve(rhs))
    svd.compute(a, ComputeThinV);
    svd.matrixV();
    VERIFY_RAISES_ASSERT(svd.matrixU())
    VERIFY_RAISES_ASSERT(svd.solve(rhs))
  }
  else
  {
    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
  }
}

#undef SVD_DEFAULT
#undef SVD_FOR_MIN_NORM