aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/stl_iterators.cpp
blob: 5d501dcd6a747e0788fc719fcd78d6b321a34bfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include <numeric>
#include "main.h"

template< class Iterator >
std::reverse_iterator<Iterator>
make_reverse_iterator( Iterator i )
{
  return std::reverse_iterator<Iterator>(i);
}

template<typename XprType>
bool is_PointerBasedStlIterator(const PointerBasedStlIterator<XprType> &) { return true; }

template<typename XprType>
bool is_DenseStlIterator(const DenseStlIterator<XprType> &) { return true; }

template<typename Scalar, int Rows, int Cols>
void test_range_for_loop(int rows=Rows, int cols=Cols)
{
  using std::begin;
  using std::end;

  typedef Matrix<Scalar,Rows,1> VectorType;
  typedef Matrix<Scalar,1,Cols> RowVectorType;
  typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
  typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
  VectorType v = VectorType::Random(rows);
  const VectorType& cv(v);
  ColMatrixType A = ColMatrixType::Random(rows,cols);
  const ColMatrixType& cA(A);
  RowMatrixType B = RowMatrixType::Random(rows,cols);
  
  Index i, j;

  VERIFY( is_PointerBasedStlIterator(v.begin()) );
  VERIFY( is_PointerBasedStlIterator(v.end()) );
  VERIFY( is_PointerBasedStlIterator(cv.begin()) );
  VERIFY( is_PointerBasedStlIterator(cv.end()) );

  j = internal::random<Index>(0,A.cols()-1);
  VERIFY( is_PointerBasedStlIterator(A.col(j).begin()) );
  VERIFY( is_PointerBasedStlIterator(A.col(j).end()) );
  VERIFY( is_PointerBasedStlIterator(cA.col(j).begin()) );
  VERIFY( is_PointerBasedStlIterator(cA.col(j).end()) );

  i = internal::random<Index>(0,A.rows()-1);
  VERIFY( is_PointerBasedStlIterator(A.row(i).begin()) );
  VERIFY( is_PointerBasedStlIterator(A.row(i).end()) );
  VERIFY( is_PointerBasedStlIterator(cA.row(i).begin()) );
  VERIFY( is_PointerBasedStlIterator(cA.row(i).end()) );

  VERIFY( is_PointerBasedStlIterator(A.reshaped().begin()) );
  VERIFY( is_PointerBasedStlIterator(A.reshaped().end()) );
  VERIFY( is_PointerBasedStlIterator(cA.reshaped().begin()) );
  VERIFY( is_PointerBasedStlIterator(cA.reshaped().end()) );

  VERIFY( is_PointerBasedStlIterator(B.template reshaped<AutoOrder>().begin()) );
  VERIFY( is_PointerBasedStlIterator(B.template reshaped<AutoOrder>().end()) );

  VERIFY( is_DenseStlIterator(A.template reshaped<RowMajor>().begin()) );
  VERIFY( is_DenseStlIterator(A.template reshaped<RowMajor>().end()) );
  
#if EIGEN_HAS_CXX11
  i = 0;
  for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }

  j = internal::random<Index>(0,A.cols()-1);
  i = 0;
  for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }

  i = 0;
  for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }

  j = 0;
  i = internal::random<Index>(0,A.rows()-1);
  for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }

  i = 0;
  for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }

  // check const_iterator
  {
    i = 0;
    for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); }

    i = 0;
    for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }

    j = 0;
    i = internal::random<Index>(0,A.rows()-1);
    for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
  }

  Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B;
  i = 0;
  for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }

  VectorType w(v.size());
  i = 0;
  for(auto& x : w) { x = v(i++); }
  VERIFY_IS_EQUAL(v,w);

  {
    j = internal::random<Index>(0,A.cols()-1);
    auto it = A.col(j).begin();
    for(i=0;i<rows;++i) {
      VERIFY_IS_EQUAL(it[i],A(i,j));
    }
  }

  {
    i = internal::random<Index>(0,A.rows()-1);
    auto it = A.row(i).begin();
    for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
  }

  {
    j = internal::random<Index>(0,A.cols()-1);
    // this would produce a dangling pointer:
    // auto it = (A+2*A).col(j).begin(); 
    // we need to name the temporary expression:
    auto tmp = (A+2*A).col(j);
    auto it = tmp.begin();
    for(i=0;i<rows;++i) {
      VERIFY_IS_APPROX(it[i],3*A(i,j));
    }
  }

  
  // {
  //   j = internal::random<Index>(0,A.cols()-1);
  //   auto it = (A+2*A).col(j).begin();
  //   for(i=0;i<rows;++i) {
  //     VERIFY_IS_APPROX(it[i],3*A(i,j));
  //   }
  // }
#endif

  if(rows>=3) {
    VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1));

    VERIFY_IS_EQUAL((A.allRows().begin()+rows/2)[1], A.row(rows/2+1));
  }

  if(cols>=3) {
    VERIFY_IS_EQUAL((A.allCols().begin()+cols/2)[1], A.col(cols/2+1));
  }

  if(rows>=2)
  {
    v(1) = v(0)-Scalar(1);
    VERIFY(!std::is_sorted(begin(v),end(v)));
  }
  std::sort(begin(v),end(v));
  VERIFY(std::is_sorted(begin(v),end(v)));
  VERIFY(!std::is_sorted(make_reverse_iterator(end(v)),make_reverse_iterator(begin(v))));

  // std::sort with pointer-based iterator and default increment
  {
    j = internal::random<Index>(0,A.cols()-1);
    // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
    typename ColMatrixType::ColXpr Acol = A.col(j);
    std::sort(begin(Acol),end(Acol));
    VERIFY(std::is_sorted(Acol.cbegin(),Acol.cend()));
    A.setRandom();

    std::sort(A.col(j).begin(),A.col(j).end());
    VERIFY(std::is_sorted(A.col(j).cbegin(),A.col(j).cend()));
    A.setRandom();
  }

  // std::sort with pointer-based iterator and runtime increment
  {
    i = internal::random<Index>(0,A.rows()-1);
    typename ColMatrixType::RowXpr Arow = A.row(i);
    VERIFY_IS_EQUAL( std::distance(begin(Arow),end(Arow)), cols);
    std::sort(begin(Arow),end(Arow));
    VERIFY(std::is_sorted(Arow.cbegin(),Arow.cend()));
    A.setRandom();

    std::sort(A.row(i).begin(),A.row(i).end());
    VERIFY(std::is_sorted(A.row(i).cbegin(),A.row(i).cend()));
    A.setRandom();
  }

  // std::sort with generic iterator
  {
    auto B1 = B.reshaped();
    std::sort(begin(B1),end(B1));
    VERIFY(std::is_sorted(B1.cbegin(),B1.cend()));
    B.setRandom();

    // assertion because nested expressions are different
    // std::sort(B.reshaped().begin(),B.reshaped().end());
    // VERIFY(std::is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
    // B.setRandom();
  }

  {
    j = internal::random<Index>(0,A.cols()-1);
    typename ColMatrixType::ColXpr Acol = A.col(j);
    std::partial_sum(begin(Acol), end(Acol), begin(v));
    VERIFY_IS_EQUAL(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last)));

    // inplace
    std::partial_sum(begin(Acol), end(Acol), begin(Acol));
    VERIFY_IS_EQUAL(v, Acol);
  }

  if(rows>=3)
  {
    // stress random access
    v.setRandom();
    VectorType v1 = v;
    std::sort(begin(v1),end(v1));
    std::nth_element(v.begin(), v.begin()+rows/2, v.end());
    VERIFY_IS_APPROX(v1(rows/2), v(rows/2));

    v.setRandom();
    v1 = v;
    std::sort(begin(v1)+rows/2,end(v1));
    std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end());
    VERIFY_IS_APPROX(v1(rows/4), v(rows/4));
  }

#if EIGEN_HAS_CXX11
  j = 0;
  for(auto c : A.allCols()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
  j = 0;
  for(auto c : B.allCols()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }

  j = 0;
  for(auto c : B.allCols()) {
    i = 0;
    for(auto& x : c) {
      VERIFY_IS_EQUAL(x, B(i,j));
      x = A(i,j);
      ++i;
    }
    ++j;
  }
  VERIFY_IS_APPROX(A,B);
  B = Bc; // restore B
  
  i = 0;
  for(auto r : A.allRows()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
  i = 0;
  for(auto r : B.allRows()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }


  {
    RowVectorType row = RowVectorType::Random(cols);
    A.rowwise() = row;
    VERIFY( std::all_of(A.allRows().begin(), A.allRows().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.norm(),row.norm()); }) );

    VectorType col = VectorType::Random(rows);
    A.colwise() = col;
    VERIFY( std::all_of(A.allCols().begin(), A.allCols().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.norm(),col.norm()); }) );
  }

#endif
}

EIGEN_DECLARE_TEST(stl_iterators)
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1(( test_range_for_loop<double,2,3>() ));
    CALL_SUBTEST_1(( test_range_for_loop<float,7,5>() ));
    CALL_SUBTEST_1(( test_range_for_loop<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
    CALL_SUBTEST_1(( test_range_for_loop<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
  }
}