aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/stdvector_overload.cpp
blob: 898719a2652a6acc31ecbf7312b1549ac9ee5433 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"

#include <Eigen/StdVector>
#include <Eigen/Geometry>

EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Vector4f)

EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Matrix2f)
EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Matrix4f)
EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Matrix4d)

EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Transform3f)
EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Transform3d)

EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Quaternionf)
EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Quaterniond)

template<typename MatrixType>
void check_stdvector_matrix(const MatrixType& m)
{
  typename MatrixType::Index rows = m.rows();
  typename MatrixType::Index cols = m.cols();
  MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols);
  std::vector<MatrixType> v(10, MatrixType(rows,cols)), w(20, y);
  v[5] = x;
  w[6] = v[5];
  VERIFY_IS_APPROX(w[6], v[5]);
  v = w;
  for(int i = 0; i < 20; i++)
  {
    VERIFY_IS_APPROX(w[i], v[i]);
  }

  v.resize(21);
  v[20] = x;
  VERIFY_IS_APPROX(v[20], x);
  v.resize(22,y);
  VERIFY_IS_APPROX(v[21], y);
  v.push_back(x);
  VERIFY_IS_APPROX(v[22], x);
  VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(MatrixType));

  // do a lot of push_back such that the vector gets internally resized
  // (with memory reallocation)
  MatrixType* ref = &w[0];
  for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
    v.push_back(w[i%w.size()]);
  for(unsigned int i=23; i<v.size(); ++i)
  {
    VERIFY(v[i]==w[(i-23)%w.size()]);
  }
}

template<typename TransformType>
void check_stdvector_transform(const TransformType&)
{
  typedef typename TransformType::MatrixType MatrixType;
  TransformType x(MatrixType::Random()), y(MatrixType::Random());
  std::vector<TransformType> v(10), w(20, y);
  v[5] = x;
  w[6] = v[5];
  VERIFY_IS_APPROX(w[6], v[5]);
  v = w;
  for(int i = 0; i < 20; i++)
  {
    VERIFY_IS_APPROX(w[i], v[i]);
  }

  v.resize(21);
  v[20] = x;
  VERIFY_IS_APPROX(v[20], x);
  v.resize(22,y);
  VERIFY_IS_APPROX(v[21], y);
  v.push_back(x);
  VERIFY_IS_APPROX(v[22], x);
  VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(TransformType));

  // do a lot of push_back such that the vector gets internally resized
  // (with memory reallocation)
  TransformType* ref = &w[0];
  for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
    v.push_back(w[i%w.size()]);
  for(unsigned int i=23; i<v.size(); ++i)
  {
    VERIFY(v[i].matrix()==w[(i-23)%w.size()].matrix());
  }
}

template<typename QuaternionType>
void check_stdvector_quaternion(const QuaternionType&)
{
  typedef typename QuaternionType::Coefficients Coefficients;
  QuaternionType x(Coefficients::Random()), y(Coefficients::Random());
  std::vector<QuaternionType> v(10), w(20, y);
  v[5] = x;
  w[6] = v[5];
  VERIFY_IS_APPROX(w[6], v[5]);
  v = w;
  for(int i = 0; i < 20; i++)
  {
    VERIFY_IS_APPROX(w[i], v[i]);
  }

  v.resize(21);
  v[20] = x;
  VERIFY_IS_APPROX(v[20], x);
  v.resize(22,y);
  VERIFY_IS_APPROX(v[21], y);
  v.push_back(x);
  VERIFY_IS_APPROX(v[22], x);
  VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(QuaternionType));

  // do a lot of push_back such that the vector gets internally resized
  // (with memory reallocation)
  QuaternionType* ref = &w[0];
  for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
    v.push_back(w[i%w.size()]);
  for(unsigned int i=23; i<v.size(); ++i)
  {
    VERIFY(v[i].coeffs()==w[(i-23)%w.size()].coeffs());
  }
}

void test_stdvector_overload()
{
  // some non vectorizable fixed sizes
  CALL_SUBTEST_1(check_stdvector_matrix(Vector2f()));
  CALL_SUBTEST_1(check_stdvector_matrix(Matrix3f()));
  CALL_SUBTEST_2(check_stdvector_matrix(Matrix3d()));

  // some vectorizable fixed sizes
  CALL_SUBTEST_1(check_stdvector_matrix(Matrix2f()));
  CALL_SUBTEST_1(check_stdvector_matrix(Vector4f()));
  CALL_SUBTEST_1(check_stdvector_matrix(Matrix4f()));
  CALL_SUBTEST_2(check_stdvector_matrix(Matrix4d()));

  // some dynamic sizes
  CALL_SUBTEST_3(check_stdvector_matrix(MatrixXd(1,1)));
  CALL_SUBTEST_3(check_stdvector_matrix(VectorXd(20)));
  CALL_SUBTEST_3(check_stdvector_matrix(RowVectorXf(20)));
  CALL_SUBTEST_3(check_stdvector_matrix(MatrixXcf(10,10)));

  // some Transform
  CALL_SUBTEST_4(check_stdvector_transform(Transform2f())); // does not need the specialization (2+1)^2 = 9
  CALL_SUBTEST_4(check_stdvector_transform(Transform3f()));
  CALL_SUBTEST_4(check_stdvector_transform(Transform3d()));

  // some Quaternion
  CALL_SUBTEST_5(check_stdvector_quaternion(Quaternionf()));
  CALL_SUBTEST_5(check_stdvector_quaternion(Quaterniond()));
}