aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/sparse_vector.cpp
blob: 35129278bd7ff3913f0af86395e697f3ab9f01d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "sparse.h"

template<typename Scalar,typename StorageIndex> void sparse_vector(int rows, int cols)
{
  double densityMat = (std::max)(8./(rows*cols), 0.01);
  double densityVec = (std::max)(8./(rows), 0.1);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  typedef SparseVector<Scalar,0,StorageIndex> SparseVectorType;
  typedef SparseMatrix<Scalar,0,StorageIndex> SparseMatrixType;
  Scalar eps = 1e-6;

  SparseMatrixType m1(rows,rows);
  SparseVectorType v1(rows), v2(rows), v3(rows);
  DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
  DenseVector refV1 = DenseVector::Random(rows),
              refV2 = DenseVector::Random(rows),
              refV3 = DenseVector::Random(rows);

  std::vector<int> zerocoords, nonzerocoords;
  initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords);
  initSparse<Scalar>(densityMat, refM1, m1);

  initSparse<Scalar>(densityVec, refV2, v2);
  initSparse<Scalar>(densityVec, refV3, v3);

  Scalar s1 = internal::random<Scalar>();

  // test coeff and coeffRef
  for (unsigned int i=0; i<zerocoords.size(); ++i)
  {
    VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps );
    //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 );
  }
  {
    VERIFY(int(nonzerocoords.size()) == v1.nonZeros());
    int j=0;
    for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j)
    {
      VERIFY(nonzerocoords[j]==it.index());
      VERIFY(it.value()==v1.coeff(it.index()));
      VERIFY(it.value()==refV1.coeff(it.index()));
    }
  }
  VERIFY_IS_APPROX(v1, refV1);
  
  // test coeffRef with reallocation
  {
    SparseVectorType v4(rows);
    DenseVector v5 = DenseVector::Zero(rows);
    for(int k=0; k<rows; ++k)
    {
      int i = internal::random<int>(0,rows-1);
      Scalar v = internal::random<Scalar>();
      v4.coeffRef(i) += v;
      v5.coeffRef(i) += v;
    }
    VERIFY_IS_APPROX(v4,v5);
  }

  v1.coeffRef(nonzerocoords[0]) = Scalar(5);
  refV1.coeffRef(nonzerocoords[0]) = Scalar(5);
  VERIFY_IS_APPROX(v1, refV1);

  VERIFY_IS_APPROX(v1+v2, refV1+refV2);
  VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3);

  VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2);

  VERIFY_IS_APPROX(v1*=s1, refV1*=s1);
  VERIFY_IS_APPROX(v1/=s1, refV1/=s1);

  VERIFY_IS_APPROX(v1+=v2, refV1+=refV2);
  VERIFY_IS_APPROX(v1-=v2, refV1-=refV2);

  VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2));
  VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2));

  VERIFY_IS_APPROX(m1*v2, refM1*refV2);
  VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2));
  {
    int i = internal::random<int>(0,rows-1);
    VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i)));
  }


  VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm());
  
  VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm());

  // test aliasing
  VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1));
  VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval()));
  VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1));
  
  // sparse matrix to sparse vector
  SparseMatrixType mv1;
  VERIFY_IS_APPROX((mv1=v1),v1);
  VERIFY_IS_APPROX(mv1,(v1=mv1));
  VERIFY_IS_APPROX(mv1,(v1=mv1.transpose()));
  
  // check copy to dense vector with transpose
  refV3.resize(0);
  VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense()); 
  VERIFY_IS_APPROX(DenseVector(v1),v1.toDense()); 

  // test conservative resize
  {
    std::vector<StorageIndex> inc;
    if(rows > 3)
      inc.push_back(-3);
    inc.push_back(0);
    inc.push_back(3);
    inc.push_back(1);
    inc.push_back(10);

    for(std::size_t i = 0; i< inc.size(); i++) {
      StorageIndex incRows = inc[i];
      SparseVectorType vec1(rows);
      DenseVector refVec1 = DenseVector::Zero(rows);
      initSparse<Scalar>(densityVec, refVec1, vec1);

      vec1.conservativeResize(rows+incRows);
      refVec1.conservativeResize(rows+incRows);
      if (incRows > 0) refVec1.tail(incRows).setZero();

      VERIFY_IS_APPROX(vec1, refVec1);

      // Insert new values
      if (incRows > 0)
        vec1.insert(vec1.rows()-1) = refVec1(refVec1.rows()-1) = 1;

      VERIFY_IS_APPROX(vec1, refVec1);
    }
  }

}

EIGEN_DECLARE_TEST(sparse_vector)
{
  for(int i = 0; i < g_repeat; i++) {
    int r = Eigen::internal::random<int>(1,500), c = Eigen::internal::random<int>(1,500);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    EIGEN_UNUSED_VARIABLE(r+c);

    CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) ));
    CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(r, c) ));
    CALL_SUBTEST_1(( sparse_vector<double,long int>(r, c) ));
    CALL_SUBTEST_1(( sparse_vector<double,short>(r, c) ));
  }
}