1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "sparse.h"
template<typename Scalar> void
initSPD(double density,
Matrix<Scalar,Dynamic,Dynamic>& refMat,
SparseMatrix<Scalar>& sparseMat)
{
Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols());
initSparse(density,refMat,sparseMat);
refMat = refMat * refMat.adjoint();
for (int k=0; k<2; ++k)
{
initSparse(density,aux,sparseMat,ForceNonZeroDiag);
refMat += aux * aux.adjoint();
}
sparseMat.setZero();
for (int j=0 ; j<sparseMat.cols(); ++j)
for (int i=j ; i<sparseMat.rows(); ++i)
if (refMat(i,j)!=Scalar(0))
sparseMat.insert(i,j) = refMat(i,j);
sparseMat.finalize();
}
template<typename Scalar> void sparse_solvers(int rows, int cols)
{
double density = std::max(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
// Scalar eps = 1e-6;
DenseVector vec1 = DenseVector::Random(rows);
std::vector<Vector2i> zeroCoords;
std::vector<Vector2i> nonzeroCoords;
// test triangular solver
{
DenseVector vec2 = vec1, vec3 = vec1;
SparseMatrix<Scalar> m2(rows, cols);
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
// lower - dense
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
VERIFY_IS_APPROX(refMat2.template triangularView<LowerTriangular>().solve(vec2),
m2.template triangular<LowerTriangular>().solve(vec3));
// upper - dense
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
VERIFY_IS_APPROX(refMat2.template triangularView<UpperTriangular>().solve(vec2),
m2.template triangular<UpperTriangular>().solve(vec3));
// TODO test row major
SparseMatrix<Scalar> matB(rows, rows);
DenseMatrix refMatB = DenseMatrix::Zero(rows, rows);
// lower - sparse
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular);
initSparse<Scalar>(density, refMatB, matB);
refMat2.template triangularView<LowerTriangular>().solveInPlace(refMatB);
m2.template triangular<LowerTriangular>().solveInPlace(matB);
VERIFY_IS_APPROX(matB.toDense(), refMatB);
// upper - sparse
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular);
initSparse<Scalar>(density, refMatB, matB);
refMat2.template triangularView<UpperTriangular>().solveInPlace(refMatB);
m2.template triangular<UpperTriangular>().solveInPlace(matB);
VERIFY_IS_APPROX(matB, refMatB);
// test deprecated API
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
VERIFY_IS_APPROX(refMat2.template triangularView<LowerTriangular>().solve(vec2),
m2.template triangular<LowerTriangular>().solve(vec3));
}
// test LLT
{
// TODO fix the issue with complex (see SparseLLT::solveInPlace)
SparseMatrix<Scalar> m2(rows, cols);
DenseMatrix refMat2(rows, cols);
DenseVector b = DenseVector::Random(cols);
DenseVector refX(cols), x(cols);
initSPD(density, refMat2, m2);
refMat2.llt().solve(b, &refX);
typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
if (!NumTraits<Scalar>::IsComplex)
{
x = b;
SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
}
#ifdef EIGEN_CHOLMOD_SUPPORT
x = b;
SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
#endif
#ifdef EIGEN_TAUCS_SUPPORT
x = b;
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
// TODO fix TAUCS with complexes
x = b;
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
x = b;
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
#endif
}
// test LDLT
if (!NumTraits<Scalar>::IsComplex)
{
// TODO fix the issue with complex (see SparseLDLT::solveInPlace)
SparseMatrix<Scalar> m2(rows, cols);
DenseMatrix refMat2(rows, cols);
DenseVector b = DenseVector::Random(cols);
DenseVector refX(cols), x(cols);
//initSPD(density, refMat2, m2);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
refMat2 += refMat2.adjoint();
refMat2.diagonal() *= 0.5;
refMat2.llt().solve(b, &refX); // FIXME use LLT to compute the reference because LDLT seems to fail with large matrices
typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
x = b;
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
if (ldlt.succeeded())
ldlt.solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
}
// test LU
{
static int count = 0;
SparseMatrix<Scalar> m2(rows, cols);
DenseMatrix refMat2(rows, cols);
DenseVector b = DenseVector::Random(cols);
DenseVector refX(cols), x(cols);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
LU<DenseMatrix> refLu(refMat2);
refLu.solve(b, &refX);
#if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
Scalar refDet = refLu.determinant();
#endif
x.setZero();
// // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
#ifdef EIGEN_SUPERLU_SUPPORT
{
x.setZero();
SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
if (slu.succeeded())
{
if (slu.solve(b,&x)) {
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
}
// std::cerr << refDet << " == " << slu.determinant() << "\n";
if (slu.solve(b, &x, SvTranspose)) {
VERIFY(b.isApprox(m2.transpose() * x, test_precision<Scalar>()));
}
if (slu.solve(b, &x, SvAdjoint)) {
// VERIFY(b.isApprox(m2.adjoint() * x, test_precision<Scalar>()));
}
if (count==0) {
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
}
}
}
#endif
#ifdef EIGEN_UMFPACK_SUPPORT
{
// check solve
x.setZero();
SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
if (slu.succeeded()) {
if (slu.solve(b,&x)) {
if (count==0) {
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
}
}
VERIFY_IS_APPROX(refDet,slu.determinant());
// TODO check the extracted data
//std::cerr << slu.matrixL() << "\n";
}
}
#endif
count++;
}
}
void test_sparse_solvers()
{
for(int i = 0; i < g_repeat; i++) {
// CALL_SUBTEST( sparse_solvers<double>(8, 8) );
CALL_SUBTEST( sparse_solvers<std::complex<double> >(16, 16) );
// CALL_SUBTEST( sparse_solvers<double>(100, 100) );
}
}
|