1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "sparse.h"
#include <Eigen/SparseCore>
template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
DenseRhs refX = dA.lu().solve(db);
Rhs x(b.rows(), b.cols());
Rhs oldb = b;
solver.compute(A);
if (solver.info() != Success)
{
std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
exit(0);
return;
}
x = solver.solve(b);
if (solver.info() != Success)
{
std::cerr << "sparse solver testing: solving failed\n";
return;
}
VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
VERIFY(x.isApprox(refX,test_precision<Scalar>()));
x.setZero();
// test the analyze/factorize API
solver.analyzePattern(A);
solver.factorize(A);
if (solver.info() != Success)
{
std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
exit(0);
return;
}
x = solver.solve(b);
if (solver.info() != Success)
{
std::cerr << "sparse solver testing: solving failed\n";
return;
}
VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
VERIFY(x.isApprox(refX,test_precision<Scalar>()));
// test Block as the result and rhs:
{
DenseRhs x(db.rows(), db.cols());
DenseRhs b(db), oldb(db);
x.setZero();
x.block(0,0,x.rows(),x.cols()) = solver.solve(b.block(0,0,b.rows(),b.cols()));
VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
VERIFY(x.isApprox(refX,test_precision<Scalar>()));
}
}
template<typename Solver, typename Rhs>
void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef typename Mat::RealScalar RealScalar;
Rhs x(b.rows(), b.cols());
solver.compute(A);
if (solver.info() != Success)
{
std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
exit(0);
return;
}
x = solver.solve(b);
if (solver.info() != Success)
{
std::cerr << "sparse solver testing: solving failed\n";
return;
}
RealScalar res_error;
// Compute the norm of the relative error
if(refX.size() != 0)
res_error = (refX - x).norm()/refX.norm();
else
{
// Compute the relative residual norm
res_error = (b - A * x).norm()/b.norm();
}
if (res_error > test_precision<Scalar>() ){
std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__)
<< " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
abort();
}
}
template<typename Solver, typename DenseMat>
void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef typename Mat::RealScalar RealScalar;
solver.compute(A);
if (solver.info() != Success)
{
std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
return;
}
Scalar refDet = dA.determinant();
VERIFY_IS_APPROX(refDet,solver.determinant());
}
template<typename Solver, typename DenseMat>
int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
int size = internal::random<int>(1,maxSize);
double density = (std::max)(8./(size*size), 0.01);
Mat M(size, size);
DenseMatrix dM(size, size);
initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
A = M * M.adjoint();
dA = dM * dM.adjoint();
halfA.resize(size,size);
halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
return size;
}
#ifdef TEST_REAL_CASES
template<typename Scalar>
inline std::string get_matrixfolder()
{
std::string mat_folder = TEST_REAL_CASES;
if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
mat_folder = mat_folder + static_cast<string>("/complex/");
else
mat_folder = mat_folder + static_cast<string>("/real/");
return mat_folder;
}
#endif
template<typename Solver> void check_sparse_spd_solving(Solver& solver)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef typename Mat::Index Index;
typedef SparseMatrix<Scalar,ColMajor> SpMat;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
// generate the problem
Mat A, halfA;
DenseMatrix dA;
int size = generate_sparse_spd_problem(solver, A, halfA, dA);
// generate the right hand sides
int rhsCols = internal::random<int>(1,16);
double density = (std::max)(8./(size*rhsCols), 0.1);
SpMat B(size,rhsCols);
DenseVector b = DenseVector::Random(size);
DenseMatrix dB(size,rhsCols);
initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
for (int i = 0; i < g_repeat; i++) {
check_sparse_solving(solver, A, b, dA, b);
check_sparse_solving(solver, halfA, b, dA, b);
check_sparse_solving(solver, A, dB, dA, dB);
check_sparse_solving(solver, halfA, dB, dA, dB);
check_sparse_solving(solver, A, B, dA, dB);
check_sparse_solving(solver, halfA, B, dA, dB);
}
// First, get the folder
#ifdef TEST_REAL_CASES
if (internal::is_same<Scalar, float>::value
|| internal::is_same<Scalar, std::complex<float> >::value)
return ;
std::string mat_folder = get_matrixfolder<Scalar>();
MatrixMarketIterator<Scalar> it(mat_folder);
for (; it; ++it)
{
if (it.sym() == SPD){
Mat halfA;
PermutationMatrix<Dynamic, Dynamic, Index> pnull;
halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
}
}
#endif
}
template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
// generate the problem
Mat A, halfA;
DenseMatrix dA;
generate_sparse_spd_problem(solver, A, halfA, dA, 30);
for (int i = 0; i < g_repeat; i++) {
check_sparse_determinant(solver, A, dA);
check_sparse_determinant(solver, halfA, dA );
}
}
template<typename Solver, typename DenseMat>
int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
int size = internal::random<int>(1,maxSize);
double density = (std::max)(8./(size*size), 0.01);
A.resize(size,size);
dA.resize(size,size);
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
return size;
}
template<typename Solver> void check_sparse_square_solving(Solver& solver)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
int rhsCols = internal::random<int>(1,16);
Mat A;
DenseMatrix dA;
int size = generate_sparse_square_problem(solver, A, dA);
DenseVector b = DenseVector::Random(size);
DenseMatrix dB = DenseMatrix::Random(size,rhsCols);
A.makeCompressed();
for (int i = 0; i < g_repeat; i++) {
check_sparse_solving(solver, A, b, dA, b);
check_sparse_solving(solver, A, dB, dA, dB);
}
// First, get the folder
#ifdef TEST_REAL_CASES
if (internal::is_same<Scalar, float>::value
|| internal::is_same<Scalar, std::complex<float> >::value)
return ;
std::string mat_folder = get_matrixfolder<Scalar>();
MatrixMarketIterator<Scalar> it(mat_folder);
for (; it; ++it)
{
std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
}
#endif
}
template<typename Solver> void check_sparse_square_determinant(Solver& solver)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
// generate the problem
Mat A;
DenseMatrix dA;
generate_sparse_square_problem(solver, A, dA, 30);
A.makeCompressed();
for (int i = 0; i < g_repeat; i++) {
check_sparse_determinant(solver, A, dA);
}
}
|