1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "sparse.h"
template<typename SetterType,typename DenseType, typename Scalar, int Options>
bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
{
typedef SparseMatrix<Scalar,Options> SparseType;
{
sm.setZero();
SetterType w(sm);
std::vector<Vector2i> remaining = nonzeroCoords;
while(!remaining.empty())
{
int i = ei_random<int>(0,remaining.size()-1);
w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
remaining[i] = remaining.back();
remaining.pop_back();
}
}
return sm.isApprox(ref);
}
template<typename SetterType,typename DenseType, typename T>
bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
{
sm.setZero();
std::vector<Vector2i> remaining = nonzeroCoords;
while(!remaining.empty())
{
int i = ei_random<int>(0,remaining.size()-1);
sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
remaining[i] = remaining.back();
remaining.pop_back();
}
return sm.isApprox(ref);
}
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
const int rows = ref.rows();
const int cols = ref.cols();
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = std::max(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
Scalar eps = 1e-6;
SparseMatrixType m(rows, cols);
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
DenseVector vec1 = DenseVector::Random(rows);
Scalar s1 = ei_random<Scalar>();
std::vector<Vector2i> zeroCoords;
std::vector<Vector2i> nonzeroCoords;
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
return;
// test coeff and coeffRef
for (int i=0; i<(int)zeroCoords.size(); ++i)
{
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
}
VERIFY_IS_APPROX(m, refMat);
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
VERIFY_IS_APPROX(m, refMat);
/*
// test InnerIterators and Block expressions
for (int t=0; t<10; ++t)
{
int j = ei_random<int>(0,cols-1);
int i = ei_random<int>(0,rows-1);
int w = ei_random<int>(1,cols-j-1);
int h = ei_random<int>(1,rows-i-1);
// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
for(int c=0; c<w; c++)
{
VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
for(int r=0; r<h; r++)
{
// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
}
}
// for(int r=0; r<h; r++)
// {
// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
// for(int c=0; c<w; c++)
// {
// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
// }
// }
}
for(int c=0; c<cols; c++)
{
VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
}
for(int r=0; r<rows; r++)
{
VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
}
*/
// test SparseSetters
// coherent setter
// TODO extend the MatrixSetter
// {
// m.setZero();
// VERIFY_IS_NOT_APPROX(m, refMat);
// SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m);
// for (int i=0; i<nonzeroCoords.size(); ++i)
// {
// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
// }
// }
// VERIFY_IS_APPROX(m, refMat);
// random setter
// {
// m.setZero();
// VERIFY_IS_NOT_APPROX(m, refMat);
// SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
// std::vector<Vector2i> remaining = nonzeroCoords;
// while(!remaining.empty())
// {
// int i = ei_random<int>(0,remaining.size()-1);
// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
// remaining[i] = remaining.back();
// remaining.pop_back();
// }
// }
// VERIFY_IS_APPROX(m, refMat);
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
#ifdef EIGEN_UNORDERED_MAP_SUPPORT
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) ));
#endif
#ifdef _DENSE_HASH_MAP_H_
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
#endif
#ifdef _SPARSE_HASH_MAP_H_
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
#endif
// test insert (inner random)
{
DenseMatrix m1(rows,cols);
m1.setZero();
SparseMatrixType m2(rows,cols);
m2.reserve(10);
for (int j=0; j<cols; ++j)
{
for (int k=0; k<rows/2; ++k)
{
int i = ei_random<int>(0,rows-1);
if (m1.coeff(i,j)==Scalar(0))
m2.insert(i,j) = m1(i,j) = ei_random<Scalar>();
}
}
m2.finalize();
VERIFY_IS_APPROX(m2,m1);
}
// test insert (fully random)
{
DenseMatrix m1(rows,cols);
m1.setZero();
SparseMatrixType m2(rows,cols);
m2.reserve(10);
for (int k=0; k<rows*cols; ++k)
{
int i = ei_random<int>(0,rows-1);
int j = ei_random<int>(0,cols-1);
if (m1.coeff(i,j)==Scalar(0))
m2.insert(i,j) = m1(i,j) = ei_random<Scalar>();
}
m2.finalize();
VERIFY_IS_APPROX(m2,m1);
}
// test RandomSetter
/*{
SparseMatrixType m1(rows,cols), m2(rows,cols);
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
initSparse<Scalar>(density, refM1, m1);
{
Eigen::RandomSetter<SparseMatrixType > setter(m2);
for (int j=0; j<m1.outerSize(); ++j)
for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
setter(i.index(), j) = i.value();
}
VERIFY_IS_APPROX(m1, m2);
}*/
// std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n";
// VERIFY_IS_APPROX(m, refMat);
// test basic computations
{
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m1(rows, rows);
SparseMatrixType m2(rows, rows);
SparseMatrixType m3(rows, rows);
SparseMatrixType m4(rows, rows);
initSparse<Scalar>(density, refM1, m1);
initSparse<Scalar>(density, refM2, m2);
initSparse<Scalar>(density, refM3, m3);
initSparse<Scalar>(density, refM4, m4);
VERIFY_IS_APPROX(m1+m2, refM1+refM2);
VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2));
VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
refM4.setRandom();
// sparse cwise* dense
VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4);
// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
}
// test innerVector()
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
int j0 = ei_random(0,rows-1);
int j1 = ei_random(0,rows-1);
VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
//m2.innerVector(j0) = 2*m2.innerVector(j1);
//refMat2.col(j0) = 2*refMat2.col(j1);
//VERIFY_IS_APPROX(m2, refMat2);
}
// test innerVectors()
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
int j0 = ei_random(0,rows-2);
int j1 = ei_random(0,rows-2);
int n0 = ei_random<int>(1,rows-std::max(j0,j1));
VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
//m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
//refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
}
// test transpose
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
}
// test prune
{
SparseMatrixType m2(rows, rows);
DenseMatrix refM2(rows, rows);
refM2.setZero();
int countFalseNonZero = 0;
int countTrueNonZero = 0;
for (int j=0; j<m2.outerSize(); ++j)
{
m2.startVec(j);
for (int i=0; i<m2.innerSize(); ++i)
{
float x = ei_random<float>(0,1);
if (x<0.1)
{
// do nothing
}
else if (x<0.5)
{
countFalseNonZero++;
m2.insertBack(j,i) = Scalar(0);
}
else
{
countTrueNonZero++;
m2.insertBack(j,i) = refM2(i,j) = Scalar(1);
}
}
}
m2.finalize();
VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
VERIFY_IS_APPROX(m2, refM2);
m2.prune(1);
VERIFY(countTrueNonZero==m2.nonZeros());
VERIFY_IS_APPROX(m2, refM2);
}
}
void test_sparse_basic()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( sparse_basic(SparseMatrix<double>(8, 8)) );
CALL_SUBTEST( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) );
CALL_SUBTEST( sparse_basic(SparseMatrix<double>(33, 33)) );
CALL_SUBTEST( sparse_basic(DynamicSparseMatrix<double>(8, 8)) );
}
}
|