aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/sparse_basic.cpp
blob: 9453111b7f8294d8c85938368153e35bbe5e8c71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
static long g_realloc_count = 0;
#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;

static long g_dense_op_sparse_count = 0;
#define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++;
#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10;
#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20;
#endif

#include "sparse.h"

template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
  typedef typename SparseMatrixType::StorageIndex StorageIndex;
  typedef Matrix<StorageIndex,2,1> Vector2;
  
  const Index rows = ref.rows();
  const Index cols = ref.cols();
  //const Index inner = ref.innerSize();
  //const Index outer = ref.outerSize();

  typedef typename SparseMatrixType::Scalar Scalar;
  typedef typename SparseMatrixType::RealScalar RealScalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = (std::max)(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  Scalar eps = 1e-6;

  Scalar s1 = internal::random<Scalar>();
  {
    SparseMatrixType m(rows, cols);
    DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
    DenseVector vec1 = DenseVector::Random(rows);

    std::vector<Vector2> zeroCoords;
    std::vector<Vector2> nonzeroCoords;
    initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);

    // test coeff and coeffRef
    for (std::size_t i=0; i<zeroCoords.size(); ++i)
    {
      VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
      if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
        VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
    }
    VERIFY_IS_APPROX(m, refMat);

    if(!nonzeroCoords.empty()) {
      m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
      refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
    }

    VERIFY_IS_APPROX(m, refMat);

      // test assertion
      VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
      VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
    }

    // test insert (inner random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      bool call_reserve = internal::random<int>()%2;
      Index nnz = internal::random<int>(1,int(rows)/2);
      if(call_reserve)
      {
        if(internal::random<int>()%2)
          m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
        else
          m2.reserve(m2.outerSize() * nnz);
      }
      g_realloc_count = 0;
      for (Index j=0; j<cols; ++j)
      {
        for (Index k=0; k<nnz; ++k)
        {
          Index i = internal::random<Index>(0,rows-1);
          if (m1.coeff(i,j)==Scalar(0))
            m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
        }
      }
      
      if(call_reserve && !SparseMatrixType::IsRowMajor)
      {
        VERIFY(g_realloc_count==0);
      }
      
      m2.finalize();
      VERIFY_IS_APPROX(m2,m1);
    }

    // test insert (fully random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      if(internal::random<int>()%2)
        m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
      for (int k=0; k<rows*cols; ++k)
      {
        Index i = internal::random<Index>(0,rows-1);
        Index j = internal::random<Index>(0,cols-1);
        if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
          m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
        else
        {
          Scalar v = internal::random<Scalar>();
          m2.coeffRef(i,j) += v;
          m1(i,j) += v;
        }
      }
      VERIFY_IS_APPROX(m2,m1);
    }
    
    // test insert (un-compressed)
    for(int mode=0;mode<4;++mode)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
      m2.reserve(r);
      for (Index k=0; k<rows*cols; ++k)
      {
        Index i = internal::random<Index>(0,rows-1);
        Index j = internal::random<Index>(0,cols-1);
        if (m1.coeff(i,j)==Scalar(0))
          m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
        if(mode==3)
          m2.reserve(r);
      }
      if(internal::random<int>()%2)
        m2.makeCompressed();
      VERIFY_IS_APPROX(m2,m1);
    }

  // test basic computations
  {
    DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
    DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
    DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
    DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m1(rows, cols);
    SparseMatrixType m2(rows, cols);
    SparseMatrixType m3(rows, cols);
    SparseMatrixType m4(rows, cols);
    initSparse<Scalar>(density, refM1, m1);
    initSparse<Scalar>(density, refM2, m2);
    initSparse<Scalar>(density, refM3, m3);
    initSparse<Scalar>(density, refM4, m4);

    if(internal::random<bool>())
      m1.makeCompressed();

    Index m1_nnz = m1.nonZeros();

    VERIFY_IS_APPROX(m1*s1, refM1*s1);
    VERIFY_IS_APPROX(m1+m2, refM1+refM2);
    VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
    VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
    VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
    VERIFY_IS_APPROX(m4=m1/s1, refM1/s1);
    VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz);

    if(SparseMatrixType::IsRowMajor)
      VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
    else
      VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));

    DenseVector rv = DenseVector::Random(m1.cols());
    DenseVector cv = DenseVector::Random(m1.rows());
    Index r = internal::random<Index>(0,m1.rows()-2);
    Index c = internal::random<Index>(0,m1.cols()-1);
    VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
    VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
    VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));

    VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
    VERIFY_IS_APPROX(m1.real(), refM1.real());

    refM4.setRandom();
    // sparse cwise* dense
    VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
    // dense cwise* sparse
    VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
//     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);

    // mixed sparse-dense
    VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
    VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
    VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
    VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));

    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
    VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));


    VERIFY_IS_APPROX(m1.sum(), refM1.sum());

    m4 = m1; refM4 = m4;

    VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
    VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);

    VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
    VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);

    refM3 = refM1;
    
    VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2);
    VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2);

    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,10);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);

    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,20);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
    refM3 = m3;

    if (rows>=2 && cols>=2)
    {
      VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
      VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
      VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
      VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
    }
    m1 = m4; refM1 = refM4;

    // test aliasing
    VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
    m1 = m4; refM1 = refM4;
    VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
    m1 = m4; refM1 = refM4;
    VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
    m1 = m4; refM1 = refM4;
    VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
    m1 = m4; refM1 = refM4;

    if(m1.isCompressed())
    {
      VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
      m1.coeffs() += s1;
      for(Index j = 0; j<m1.outerSize(); ++j)
        for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
          refM1(it.row(), it.col()) += s1;
      VERIFY_IS_APPROX(m1, refM1);
    }

    // and/or
    {
      typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
      SpBool mb1 = m1.real().template cast<bool>();
      SpBool mb2 = m2.real().template cast<bool>();
      VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
      VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
      VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
      SpBool mb3 = mb1 && mb2;
      if(mb1.coeffs().all() && mb2.coeffs().all())
      {
        VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
      }
    }
  }

  // test reverse iterators
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m2(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    std::vector<Scalar> ref_value(m2.innerSize());
    std::vector<Index> ref_index(m2.innerSize());
    if(internal::random<bool>())
      m2.makeCompressed();
    for(Index j = 0; j<m2.outerSize(); ++j)
    {
      Index count_forward = 0;

      for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
      {
        ref_value[ref_value.size()-1-count_forward] = it.value();
        ref_index[ref_index.size()-1-count_forward] = it.index();
        count_forward++;
      }
      Index count_reverse = 0;
      for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
      {
        VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
        VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
        count_reverse++;
      }
      VERIFY_IS_EQUAL(count_forward, count_reverse);
    }
  }

  // test transpose
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m2(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
    VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());

    VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
    
    // check isApprox handles opposite storage order
    typename Transpose<SparseMatrixType>::PlainObject m3(m2);
    VERIFY(m2.isApprox(m3));
  }

  // test prune
  {
    SparseMatrixType m2(rows, cols);
    DenseMatrix refM2(rows, cols);
    refM2.setZero();
    int countFalseNonZero = 0;
    int countTrueNonZero = 0;
    m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
    for (Index j=0; j<m2.cols(); ++j)
    {
      for (Index i=0; i<m2.rows(); ++i)
      {
        float x = internal::random<float>(0,1);
        if (x<0.1f)
        {
          // do nothing
        }
        else if (x<0.5f)
        {
          countFalseNonZero++;
          m2.insert(i,j) = Scalar(0);
        }
        else
        {
          countTrueNonZero++;
          m2.insert(i,j) = Scalar(1);
          refM2(i,j) = Scalar(1);
        }
      }
    }
    if(internal::random<bool>())
      m2.makeCompressed();
    VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
    if(countTrueNonZero>0)
      VERIFY_IS_APPROX(m2, refM2);
    m2.prune(Scalar(1));
    VERIFY(countTrueNonZero==m2.nonZeros());
    VERIFY_IS_APPROX(m2, refM2);
  }

  // test setFromTriplets
  {
    typedef Triplet<Scalar,StorageIndex> TripletType;
    std::vector<TripletType> triplets;
    Index ntriplets = rows*cols;
    triplets.reserve(ntriplets);
    DenseMatrix refMat_sum  = DenseMatrix::Zero(rows,cols);
    DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
    DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);

    for(Index i=0;i<ntriplets;++i)
    {
      StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
      StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
      Scalar v = internal::random<Scalar>();
      triplets.push_back(TripletType(r,c,v));
      refMat_sum(r,c) += v;
      if(std::abs(refMat_prod(r,c))==0)
        refMat_prod(r,c) = v;
      else
        refMat_prod(r,c) *= v;
      refMat_last(r,c) = v;
    }
    SparseMatrixType m(rows,cols);
    m.setFromTriplets(triplets.begin(), triplets.end());
    VERIFY_IS_APPROX(m, refMat_sum);

    m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
    VERIFY_IS_APPROX(m, refMat_prod);
#if (EIGEN_COMP_CXXVER >= 11)
    m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
    VERIFY_IS_APPROX(m, refMat_last);
#endif
  }
  
  // test Map
  {
    DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
    SparseMatrixType m2(rows, cols), m3(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    initSparse<Scalar>(density, refMat3, m3);
    {
      Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
      Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
    }
    {
      MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
      MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
    }

    Index i = internal::random<Index>(0,rows-1);
    Index j = internal::random<Index>(0,cols-1);
    m2.coeffRef(i,j) = 123;
    if(internal::random<bool>())
      m2.makeCompressed();
    Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(),  m2.innerNonZeroPtr());
    VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
    VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
    mapMat2.coeffRef(i,j) = -123;
    VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
  }

  // test triangularView
  {
    DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
    SparseMatrixType m2(rows, cols), m3(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    refMat3 = refMat2.template triangularView<Lower>();
    m3 = m2.template triangularView<Lower>();
    VERIFY_IS_APPROX(m3, refMat3);

    refMat3 = refMat2.template triangularView<Upper>();
    m3 = m2.template triangularView<Upper>();
    VERIFY_IS_APPROX(m3, refMat3);

    {
      refMat3 = refMat2.template triangularView<UnitUpper>();
      m3 = m2.template triangularView<UnitUpper>();
      VERIFY_IS_APPROX(m3, refMat3);

      refMat3 = refMat2.template triangularView<UnitLower>();
      m3 = m2.template triangularView<UnitLower>();
      VERIFY_IS_APPROX(m3, refMat3);
    }

    refMat3 = refMat2.template triangularView<StrictlyUpper>();
    m3 = m2.template triangularView<StrictlyUpper>();
    VERIFY_IS_APPROX(m3, refMat3);

    refMat3 = refMat2.template triangularView<StrictlyLower>();
    m3 = m2.template triangularView<StrictlyLower>();
    VERIFY_IS_APPROX(m3, refMat3);

    // check sparse-triangular to dense
    refMat3 = m2.template triangularView<StrictlyUpper>();
    VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
  }
  
  // test selfadjointView
  if(!SparseMatrixType::IsRowMajor)
  {
    DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
    SparseMatrixType m2(rows, rows), m3(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    refMat3 = refMat2.template selfadjointView<Lower>();
    m3 = m2.template selfadjointView<Lower>();
    VERIFY_IS_APPROX(m3, refMat3);

    refMat3 += refMat2.template selfadjointView<Lower>();
    m3 += m2.template selfadjointView<Lower>();
    VERIFY_IS_APPROX(m3, refMat3);

    refMat3 -= refMat2.template selfadjointView<Lower>();
    m3 -= m2.template selfadjointView<Lower>();
    VERIFY_IS_APPROX(m3, refMat3);

    // selfadjointView only works for square matrices:
    SparseMatrixType m4(rows, rows+1);
    VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
    VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
  }
  
  // test sparseView
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());

    // sparse view on expressions:
    VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
    VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
    VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
    VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
  }

  // test diagonal
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m2(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
    DenseVector d = m2.diagonal();
    VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
    d = m2.diagonal().array();
    VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
    VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
    
    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
    m2.diagonal()      += refMat2.diagonal();
    refMat2.diagonal() += refMat2.diagonal();
    VERIFY_IS_APPROX(m2, refMat2);
  }
  
  // test diagonal to sparse
  {
    DenseVector d = DenseVector::Random(rows);
    DenseMatrix refMat2 = d.asDiagonal();
    SparseMatrixType m2;
    m2 = d.asDiagonal();
    VERIFY_IS_APPROX(m2, refMat2);
    SparseMatrixType m3(d.asDiagonal());
    VERIFY_IS_APPROX(m3, refMat2);
    refMat2 += d.asDiagonal();
    m2 += d.asDiagonal();
    VERIFY_IS_APPROX(m2, refMat2);
    m2.setZero();       m2 += d.asDiagonal();
    refMat2.setZero();  refMat2 += d.asDiagonal();
    VERIFY_IS_APPROX(m2, refMat2);
    m2.setZero();       m2 -= d.asDiagonal();
    refMat2.setZero();  refMat2 -= d.asDiagonal();
    VERIFY_IS_APPROX(m2, refMat2);

    initSparse<Scalar>(density, refMat2, m2);
    m2.makeCompressed();
    m2 += d.asDiagonal();
    refMat2 += d.asDiagonal();
    VERIFY_IS_APPROX(m2, refMat2);

    initSparse<Scalar>(density, refMat2, m2);
    m2.makeCompressed();
    VectorXi res(rows);
    for(Index i=0; i<rows; ++i)
      res(i) = internal::random<int>(0,3);
    m2.reserve(res);
    m2 -= d.asDiagonal();
    refMat2 -= d.asDiagonal();
    VERIFY_IS_APPROX(m2, refMat2);
  }
  
  // test conservative resize
  {
      std::vector< std::pair<StorageIndex,StorageIndex> > inc;
      if(rows > 3 && cols > 2)
        inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
      inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
      inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
      inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
      inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
      inc.push_back(std::pair<StorageIndex,StorageIndex>(0,-1));
      inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,0));
      inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,-1));

      for(size_t i = 0; i< inc.size(); i++) {
        StorageIndex incRows = inc[i].first;
        StorageIndex incCols = inc[i].second;
        SparseMatrixType m1(rows, cols);
        DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
        initSparse<Scalar>(density, refMat1, m1);

        SparseMatrixType m2 = m1;
        m2.makeCompressed();

        m1.conservativeResize(rows+incRows, cols+incCols);
        m2.conservativeResize(rows+incRows, cols+incCols);
        refMat1.conservativeResize(rows+incRows, cols+incCols);
        if (incRows > 0) refMat1.bottomRows(incRows).setZero();
        if (incCols > 0) refMat1.rightCols(incCols).setZero();

        VERIFY_IS_APPROX(m1, refMat1);
        VERIFY_IS_APPROX(m2, refMat1);

        // Insert new values
        if (incRows > 0) 
          m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
        if (incCols > 0) 
          m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;

        VERIFY_IS_APPROX(m1, refMat1);


      }
  }

  // test Identity matrix
  {
    DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
    SparseMatrixType m1(rows, rows);
    m1.setIdentity();
    VERIFY_IS_APPROX(m1, refMat1);
    for(int k=0; k<rows*rows/4; ++k)
    {
      Index i = internal::random<Index>(0,rows-1);
      Index j = internal::random<Index>(0,rows-1);
      Scalar v = internal::random<Scalar>();
      m1.coeffRef(i,j) = v;
      refMat1.coeffRef(i,j) = v;
      VERIFY_IS_APPROX(m1, refMat1);
      if(internal::random<Index>(0,10)<2)
        m1.makeCompressed();
    }
    m1.setIdentity();
    refMat1.setIdentity();
    VERIFY_IS_APPROX(m1, refMat1);
  }

  // test array/vector of InnerIterator
  {
    typedef typename SparseMatrixType::InnerIterator IteratorType;

    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m2(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    IteratorType static_array[2];
    static_array[0] = IteratorType(m2,0);
    static_array[1] = IteratorType(m2,m2.outerSize()-1);
    VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
    VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
    if(static_array[0] && static_array[1])
    {
      ++(static_array[1]);
      static_array[1] = IteratorType(m2,0);
      VERIFY( static_array[1] );
      VERIFY( static_array[1].index() == static_array[0].index() );
      VERIFY( static_array[1].outer() == static_array[0].outer() );
      VERIFY( static_array[1].value() == static_array[0].value() );
    }

    std::vector<IteratorType> iters(2);
    iters[0] = IteratorType(m2,0);
    iters[1] = IteratorType(m2,m2.outerSize()-1);
  }

  // test reserve with empty rows/columns
  {
    SparseMatrixType m1(0,cols);
    m1.reserve(ArrayXi::Constant(m1.outerSize(),1));
    SparseMatrixType m2(rows,0);
    m2.reserve(ArrayXi::Constant(m2.outerSize(),1));
  }
}


template<typename SparseMatrixType>
void big_sparse_triplet(Index rows, Index cols, double density) {
  typedef typename SparseMatrixType::StorageIndex StorageIndex;
  typedef typename SparseMatrixType::Scalar Scalar;
  typedef Triplet<Scalar,Index> TripletType;
  std::vector<TripletType> triplets;
  double nelements = density * rows*cols;
  VERIFY(nelements>=0 && nelements < static_cast<double>(NumTraits<StorageIndex>::highest()));
  Index ntriplets = Index(nelements);
  triplets.reserve(ntriplets);
  Scalar sum = Scalar(0);
  for(Index i=0;i<ntriplets;++i)
  {
    Index r = internal::random<Index>(0,rows-1);
    Index c = internal::random<Index>(0,cols-1);
    // use positive values to prevent numerical cancellation errors in sum
    Scalar v = numext::abs(internal::random<Scalar>());
    triplets.push_back(TripletType(r,c,v));
    sum += v;
  }
  SparseMatrixType m(rows,cols);
  m.setFromTriplets(triplets.begin(), triplets.end());
  VERIFY(m.nonZeros() <= ntriplets);
  VERIFY_IS_APPROX(sum, m.sum());
}

template<int>
void bug1105()
{
  // Regression test for bug 1105
  int n = Eigen::internal::random<int>(200,600);
  SparseMatrix<std::complex<double>,0, long> mat(n, n);
  std::complex<double> val;

  for(int i=0; i<n; ++i)
  {
    mat.coeffRef(i, i%(n/10)) = val;
    VERIFY(mat.data().allocatedSize()<20*n);
  }
}

#ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA

EIGEN_DECLARE_TEST(sparse_basic)
{
  g_dense_op_sparse_count = 0;  // Suppresses compiler warning.
  for(int i = 0; i < g_repeat; i++) {
    int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    EIGEN_UNUSED_VARIABLE(r+c);
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
    
    r = Eigen::internal::random<int>(1,100);
    c = Eigen::internal::random<int>(1,100);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    
    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
  }

  // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
  CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
  CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));

  CALL_SUBTEST_7( bug1105<0>() );
}
#endif