1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <iostream>
#include <fstream>
#include <iomanip>
#include "main.h"
#include <Eigen/LevenbergMarquardt>
using namespace std;
using namespace Eigen;
template <typename Scalar>
struct sparseGaussianTest : SparseFunctor<Scalar, int>
{
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef SparseFunctor<Scalar,int> Base;
typedef typename Base::JacobianType JacobianType;
sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values)
{ }
VectorType model(const VectorType& uv, VectorType& x)
{
VectorType y; //Change this to use expression template
int m = Base::values();
int n = Base::inputs();
eigen_assert(uv.size()%2 == 0);
eigen_assert(uv.size() == n);
eigen_assert(x.size() == m);
y.setZero(m);
int half = n/2;
VectorBlock<const VectorType> u(uv, 0, half);
VectorBlock<const VectorType> v(uv, half, half);
Scalar coeff;
for (int j = 0; j < m; j++)
{
for (int i = 0; i < half; i++)
{
coeff = (x(j)-i)/v(i);
coeff *= coeff;
if (coeff < 1. && coeff > 0.)
y(j) += u(i)*std::pow((1-coeff), 2);
}
}
return y;
}
void initPoints(VectorType& uv_ref, VectorType& x)
{
m_x = x;
m_y = this->model(uv_ref,x);
}
int operator()(const VectorType& uv, VectorType& fvec)
{
int m = Base::values();
int n = Base::inputs();
eigen_assert(uv.size()%2 == 0);
eigen_assert(uv.size() == n);
int half = n/2;
VectorBlock<const VectorType> u(uv, 0, half);
VectorBlock<const VectorType> v(uv, half, half);
fvec = m_y;
Scalar coeff;
for (int j = 0; j < m; j++)
{
for (int i = 0; i < half; i++)
{
coeff = (m_x(j)-i)/v(i);
coeff *= coeff;
if (coeff < 1. && coeff > 0.)
fvec(j) -= u(i)*std::pow((1-coeff), 2);
}
}
return 0;
}
int df(const VectorType& uv, JacobianType& fjac)
{
int m = Base::values();
int n = Base::inputs();
eigen_assert(n == uv.size());
eigen_assert(fjac.rows() == m);
eigen_assert(fjac.cols() == n);
int half = n/2;
VectorBlock<const VectorType> u(uv, 0, half);
VectorBlock<const VectorType> v(uv, half, half);
Scalar coeff;
//Derivatives with respect to u
for (int col = 0; col < half; col++)
{
for (int row = 0; row < m; row++)
{
coeff = (m_x(row)-col)/v(col);
coeff = coeff*coeff;
if(coeff < 1. && coeff > 0.)
{
fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff);
}
}
}
//Derivatives with respect to v
for (int col = 0; col < half; col++)
{
for (int row = 0; row < m; row++)
{
coeff = (m_x(row)-col)/v(col);
coeff = coeff*coeff;
if(coeff < 1. && coeff > 0.)
{
fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff);
}
}
}
return 0;
}
VectorType m_x, m_y; //Data points
};
template<typename T>
void test_sparseLM_T()
{
typedef Matrix<T,Dynamic,1> VectorType;
int inputs = 10;
int values = 2000;
sparseGaussianTest<T> sparse_gaussian(inputs, values);
VectorType uv(inputs),uv_ref(inputs);
VectorType x(values);
// Generate the reference solution
uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
//Generate the reference data points
x.setRandom();
x = 10*x;
x.array() += 10;
sparse_gaussian.initPoints(uv_ref, x);
// Generate the initial parameters
VectorBlock<VectorType> u(uv, 0, inputs/2);
VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
v.setOnes();
//Generate u or Solve for u from v
u.setOnes();
// Solve the optimization problem
LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
int info;
// info = lm.minimize(uv);
VERIFY_IS_EQUAL(info,1);
// Do a step by step solution and save the residual
int maxiter = 200;
int iter = 0;
MatrixXd Err(values, maxiter);
MatrixXd Mod(values, maxiter);
LevenbergMarquardtSpace::Status status;
status = lm.minimizeInit(uv);
if (status==LevenbergMarquardtSpace::ImproperInputParameters)
return ;
}
void test_sparseLM()
{
CALL_SUBTEST_1(test_sparseLM_T<double>());
// CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
}
|