aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/sparse.h
blob: f0d2301533163edfc4e8c3f5895100598cfd30a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TESTSPARSE_H

#include "main.h"

#if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC
#include <tr1/unordered_map>
#define EIGEN_UNORDERED_MAP_SUPPORT
namespace std {
  using std::tr1::unordered_map;
}
#endif

#ifdef EIGEN_GOOGLEHASH_SUPPORT
  #include <google/sparse_hash_map>
#endif

#include <Eigen/Cholesky>
#include <Eigen/LU>
#include <Eigen/Sparse>

enum {
  ForceNonZeroDiag = 1,
  MakeLowerTriangular = 2,
  MakeUpperTriangular = 4,
  ForceRealDiag = 8
};

/* Initializes both a sparse and dense matrix with same random values,
 * and a ratio of \a density non zero entries.
 * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular
 *        allowing to control the shape of the matrix.
 * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero,
 *        and zero coefficients respectively.
 */
template<typename Scalar> void
initSparse(double density,
           Matrix<Scalar,Dynamic,Dynamic>& refMat,
           SparseMatrix<Scalar>& sparseMat,
           int flags = 0,
           std::vector<Vector2i>* zeroCoords = 0,
           std::vector<Vector2i>* nonzeroCoords = 0)
{
  sparseMat.setZero();
  sparseMat.reserve(int(refMat.rows()*refMat.cols()*density));
  for(int j=0; j<refMat.cols(); j++)
  {
    sparseMat.startVec(j);
    for(int i=0; i<refMat.rows(); i++)
    {
      Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
      if ((flags&ForceNonZeroDiag) && (i==j))
      {
        v = ei_random<Scalar>()*Scalar(3.);
        v = v*v + Scalar(5.);
      }
      if ((flags & MakeLowerTriangular) && j>i)
        v = Scalar(0);
      else if ((flags & MakeUpperTriangular) && j<i)
        v = Scalar(0);
      
      if ((flags&ForceRealDiag) && (i==j))
        v = ei_real(v);
        
      if (v!=Scalar(0))
      {
        sparseMat.insertBack(j,i) = v;
        if (nonzeroCoords)
          nonzeroCoords->push_back(Vector2i(i,j));
      }
      else if (zeroCoords)
      {
        zeroCoords->push_back(Vector2i(i,j));
      }
      refMat(i,j) = v;
    }
  }
  sparseMat.finalize();
}

template<typename Scalar> void
initSparse(double density,
           Matrix<Scalar,Dynamic,Dynamic>& refMat,
           DynamicSparseMatrix<Scalar>& sparseMat,
           int flags = 0,
           std::vector<Vector2i>* zeroCoords = 0,
           std::vector<Vector2i>* nonzeroCoords = 0)
{
  sparseMat.setZero();
  sparseMat.reserve(int(refMat.rows()*refMat.cols()*density));
  for(int j=0; j<refMat.cols(); j++)
  {
    sparseMat.startVec(j); // not needed for DynamicSparseMatrix
    for(int i=0; i<refMat.rows(); i++)
    {
      Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
      if ((flags&ForceNonZeroDiag) && (i==j))
      {
        v = ei_random<Scalar>()*Scalar(3.);
        v = v*v + Scalar(5.);
      }
      if ((flags & MakeLowerTriangular) && j>i)
        v = Scalar(0);
      else if ((flags & MakeUpperTriangular) && j<i)
        v = Scalar(0);
      
      if ((flags&ForceRealDiag) && (i==j))
        v = ei_real(v);
        
      if (v!=Scalar(0))
      {
        sparseMat.insertBack(j,i) = v;
        if (nonzeroCoords)
          nonzeroCoords->push_back(Vector2i(i,j));
      }
      else if (zeroCoords)
      {
        zeroCoords->push_back(Vector2i(i,j));
      }
      refMat(i,j) = v;
    }
  }
  sparseMat.finalize();
}

template<typename Scalar> void
initSparse(double density,
           Matrix<Scalar,Dynamic,1>& refVec,
           SparseVector<Scalar>& sparseVec,
           std::vector<int>* zeroCoords = 0,
           std::vector<int>* nonzeroCoords = 0)
{
  sparseVec.reserve(int(refVec.size()*density));
  sparseVec.setZero();
  for(int i=0; i<refVec.size(); i++)
  {
    Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
    if (v!=Scalar(0))
    {
      sparseVec.insertBack(i) = v;
      if (nonzeroCoords)
        nonzeroCoords->push_back(i);
    }
    else if (zeroCoords)
        zeroCoords->push_back(i);
    refVec[i] = v;
  }
}

#endif // EIGEN_TESTSPARSE_H