1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
#ifndef TEST_SOLVERBASE_H
#define TEST_SOLVERBASE_H
template<typename DstType, typename RhsType, typename MatrixType, typename SolverType>
void check_solverbase(const MatrixType& matrix, const SolverType& solver, Index rows, Index cols, Index cols2)
{
// solve
DstType m2 = DstType::Random(cols,cols2);
RhsType m3 = matrix*m2;
DstType solver_solution = DstType::Random(cols,cols2);
solver._solve_impl(m3, solver_solution);
VERIFY_IS_APPROX(m3, matrix*solver_solution);
solver_solution = DstType::Random(cols,cols2);
solver_solution = solver.solve(m3);
VERIFY_IS_APPROX(m3, matrix*solver_solution);
// test solve with transposed
m3 = RhsType::Random(rows,cols2);
m2 = matrix.transpose()*m3;
RhsType solver_solution2 = RhsType::Random(rows,cols2);
solver.template _solve_impl_transposed<false>(m2, solver_solution2);
VERIFY_IS_APPROX(m2, matrix.transpose()*solver_solution2);
solver_solution2 = RhsType::Random(rows,cols2);
solver_solution2 = solver.transpose().solve(m2);
VERIFY_IS_APPROX(m2, matrix.transpose()*solver_solution2);
// test solve with conjugate transposed
m3 = RhsType::Random(rows,cols2);
m2 = matrix.adjoint()*m3;
solver_solution2 = RhsType::Random(rows,cols2);
solver.template _solve_impl_transposed<true>(m2, solver_solution2);
VERIFY_IS_APPROX(m2, matrix.adjoint()*solver_solution2);
solver_solution2 = RhsType::Random(rows,cols2);
solver_solution2 = solver.adjoint().solve(m2);
VERIFY_IS_APPROX(m2, matrix.adjoint()*solver_solution2);
}
#endif // TEST_SOLVERBASE_H
|