1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
// This file is triangularView of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
// This file tests the basic selfadjointView API,
// the related products and decompositions are tested in specific files.
template<typename MatrixType> void selfadjoint(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m3(rows, cols);
m1.diagonal() = m1.diagonal().real().template cast<Scalar>();
// check selfadjoint to dense
m3 = m1.template selfadjointView<Upper>();
VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Upper>()), MatrixType(m1.template triangularView<Upper>()));
VERIFY_IS_APPROX(m3, m3.adjoint());
m3 = m1.template selfadjointView<Lower>();
VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Lower>()), MatrixType(m1.template triangularView<Lower>()));
VERIFY_IS_APPROX(m3, m3.adjoint());
}
void test_selfadjoint()
{
for(int i = 0; i < g_repeat ; i++)
{
int s = internal::random<int>(1,20); EIGEN_UNUSED_VARIABLE(s);
CALL_SUBTEST_1( selfadjoint(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( selfadjoint(Matrix<float, 2, 2>()) );
CALL_SUBTEST_3( selfadjoint(Matrix3cf()) );
CALL_SUBTEST_4( selfadjoint(MatrixXcd(s,s)) );
CALL_SUBTEST_5( selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s, s)) );
}
}
|