aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/ref.cpp
blob: 65b4f5a3e638dca5c2292be71e59f4835111e787 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 20013 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// This unit test cannot be easily written to work with EIGEN_DEFAULT_TO_ROW_MAJOR
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
#undef EIGEN_DEFAULT_TO_ROW_MAJOR
#endif

static int nb_temporaries;

inline void on_temporary_creation(int size) {
  // here's a great place to set a breakpoint when debugging failures in this test!
  if(size!=0) nb_temporaries++;
}
  

#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); }

#include "main.h"

#define VERIFY_EVALUATION_COUNT(XPR,N) {\
    nb_temporaries = 0; \
    XPR; \
    if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
    VERIFY( (#XPR) && nb_temporaries==N ); \
  }


// test Ref.h

template<typename MatrixType> void ref_matrix(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef Matrix<Scalar,Dynamic,Dynamic,MatrixType::Options> DynMatrixType;
  typedef Matrix<RealScalar,Dynamic,Dynamic,MatrixType::Options> RealDynMatrixType;
  
  typedef Ref<MatrixType> RefMat;
  typedef Ref<DynMatrixType> RefDynMat;
  typedef Ref<const DynMatrixType> ConstRefDynMat;
  typedef Ref<RealDynMatrixType , 0, Stride<Dynamic,Dynamic> > RefRealMatWithStride;

  Index rows = m.rows(), cols = m.cols();
  
  MatrixType  m1 = MatrixType::Random(rows, cols),
              m2 = m1;
  
  Index i = internal::random<Index>(0,rows-1);
  Index j = internal::random<Index>(0,cols-1);
  Index brows = internal::random<Index>(1,rows-i);
  Index bcols = internal::random<Index>(1,cols-j);
  
  RefMat rm0 = m1;
  VERIFY_IS_EQUAL(rm0, m1);
  RefDynMat rm1 = m1;
  VERIFY_IS_EQUAL(rm1, m1);
  RefDynMat rm2 = m1.block(i,j,brows,bcols);
  VERIFY_IS_EQUAL(rm2, m1.block(i,j,brows,bcols));
  rm2.setOnes();
  m2.block(i,j,brows,bcols).setOnes();
  VERIFY_IS_EQUAL(m1, m2);
  
  m2.block(i,j,brows,bcols).setRandom();
  rm2 = m2.block(i,j,brows,bcols);
  VERIFY_IS_EQUAL(m1, m2);
  
  
  ConstRefDynMat rm3 = m1.block(i,j,brows,bcols);
  m1.block(i,j,brows,bcols) *= 2;
  m2.block(i,j,brows,bcols) *= 2;
  VERIFY_IS_EQUAL(rm3, m2.block(i,j,brows,bcols));
  RefRealMatWithStride rm4 = m1.real();
  VERIFY_IS_EQUAL(rm4, m2.real());
  rm4.array() += 1;
  m2.real().array() += 1;
  VERIFY_IS_EQUAL(m1, m2);
}

template<typename VectorType> void ref_vector(const VectorType& m)
{
  typedef typename VectorType::Index Index;
  typedef typename VectorType::Scalar Scalar;
  typedef typename VectorType::RealScalar RealScalar;
  typedef Matrix<Scalar,Dynamic,1,VectorType::Options> DynMatrixType;
  typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixType;
  typedef Matrix<RealScalar,Dynamic,1,VectorType::Options> RealDynMatrixType;
  
  typedef Ref<VectorType> RefMat;
  typedef Ref<DynMatrixType> RefDynMat;
  typedef Ref<const DynMatrixType> ConstRefDynMat;
  typedef Ref<RealDynMatrixType , 0, InnerStride<> > RefRealMatWithStride;
  typedef Ref<DynMatrixType , 0, InnerStride<> > RefMatWithStride;

  Index size = m.size();
  
  VectorType  v1 = VectorType::Random(size),
              v2 = v1;
  MatrixType mat1 = MatrixType::Random(size,size),
             mat2 = mat1,
             mat3 = MatrixType::Random(size,size);
  
  Index i = internal::random<Index>(0,size-1);
  Index bsize = internal::random<Index>(1,size-i);
  
  RefMat rm0 = v1;
  VERIFY_IS_EQUAL(rm0, v1);
  RefDynMat rv1 = v1;
  VERIFY_IS_EQUAL(rv1, v1);
  RefDynMat rv2 = v1.segment(i,bsize);
  VERIFY_IS_EQUAL(rv2, v1.segment(i,bsize));
  rv2.setOnes();
  v2.segment(i,bsize).setOnes();
  VERIFY_IS_EQUAL(v1, v2);
  
  v2.segment(i,bsize).setRandom();
  rv2 = v2.segment(i,bsize);
  VERIFY_IS_EQUAL(v1, v2);
  
  ConstRefDynMat rm3 = v1.segment(i,bsize);
  v1.segment(i,bsize) *= 2;
  v2.segment(i,bsize) *= 2;
  VERIFY_IS_EQUAL(rm3, v2.segment(i,bsize));
  
  RefRealMatWithStride rm4 = v1.real();
  VERIFY_IS_EQUAL(rm4, v2.real());
  rm4.array() += 1;
  v2.real().array() += 1;
  VERIFY_IS_EQUAL(v1, v2);
  
  RefMatWithStride rm5 = mat1.row(i).transpose();
  VERIFY_IS_EQUAL(rm5, mat1.row(i).transpose());
  rm5.array() += 1;
  mat2.row(i).array() += 1;
  VERIFY_IS_EQUAL(mat1, mat2);
  rm5.noalias() = rm4.transpose() * mat3;
  mat2.row(i) = v2.real().transpose() * mat3;
  VERIFY_IS_APPROX(mat1, mat2);
}

template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
{
  // verify that ref-to-const don't have LvalueBit
  typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
  VERIFY( !(internal::traits<Ref<ConstPlainObjectType> >::Flags & LvalueBit) );
  VERIFY( !(internal::traits<Ref<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
  VERIFY( !(Ref<ConstPlainObjectType>::Flags & LvalueBit) );
  VERIFY( !(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
}

EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> ) { }
EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf>& ) { }
EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf,0,InnerStride<> > ) { }
EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf,0,InnerStride<> >& ) { }
EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf,0,OuterStride<> > ) { }
EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf,0,OuterStride<> >& ) { }

void call_ref()
{
  VectorXcf ca(10);
  VectorXf a(10);
  const VectorXf& ac(a);
  VectorBlock<VectorXf> ab(a,0,3);
  MatrixXf A(10,10);
  const VectorBlock<VectorXf> abc(a,0,3);

  VERIFY_EVALUATION_COUNT( call_ref_1(a), 0);
  //call_ref_1(ac);           // does not compile because ac is const
  VERIFY_EVALUATION_COUNT( call_ref_1(ab), 0);
  VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_1(abc), 0);
  VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3)), 0);
  // call_ref_1(A.row(3));    // does not compile because innerstride!=1
  VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3)), 0);
  //call_ref_1(a+a);          // does not compile for obvious reason

  VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1)), 1);     // evaluated into a temp
  VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(ac), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(a), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(ab), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(a+a), 1);            // evaluated into a temp
  VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag()), 1);      // evaluated into a temp

  VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_4(a+a), 1);           // evaluated into a temp
  VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag()), 0);

  VERIFY_EVALUATION_COUNT( call_ref_5(a), 0);
  VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_5(A), 0);
  // call_ref_5(A.transpose());   // does not compile
  VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2)), 0);

  VERIFY_EVALUATION_COUNT( call_ref_6(a), 0);
  VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3)), 1);           // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix
  VERIFY_EVALUATION_COUNT( call_ref_6(A+A), 1);                // evaluated into a temp
  VERIFY_EVALUATION_COUNT( call_ref_6(A), 0);
  VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose()), 1);      // evaluated into a temp because the storage orders do not match
  VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2)), 0);
}

void test_ref()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( ref_vector(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( ref_vector(Vector4d()) );
    CALL_SUBTEST_2( check_const_correctness(Matrix4d()) );
    CALL_SUBTEST_3( ref_vector(Vector4cf()) );
    CALL_SUBTEST_4( ref_vector(VectorXcf(8)) );
    CALL_SUBTEST_5( ref_vector(VectorXi(12)) );
    CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) );

    CALL_SUBTEST_1( ref_matrix(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( ref_matrix(Matrix4d()) );
    CALL_SUBTEST_1( ref_matrix(Matrix<float,3,5>()) );
    CALL_SUBTEST_4( ref_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) );
    CALL_SUBTEST_4( ref_matrix(Matrix<std::complex<double>,10,15>()) );
    CALL_SUBTEST_5( ref_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) );
    CALL_SUBTEST_6( call_ref() );
  }
}