aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/redux.cpp
blob: 9a1df71a85cd5e57e5c312844700ff1bc622d000 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"

template<typename MatrixType> void matrixRedux(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;

  Index rows = m.rows();
  Index cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols);

  VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
  VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
  Scalar s(0), p(1), minc(ei_real(m1.coeff(0))), maxc(ei_real(m1.coeff(0)));
  for(int j = 0; j < cols; j++)
  for(int i = 0; i < rows; i++)
  {
    s += m1(i,j);
    p *= m1(i,j);
    minc = std::min(ei_real(minc), ei_real(m1(i,j)));
    maxc = std::max(ei_real(maxc), ei_real(m1(i,j)));
  }
  const Scalar mean = s/Scalar(RealScalar(rows*cols));

  VERIFY_IS_APPROX(m1.sum(), s);
  VERIFY_IS_APPROX(m1.mean(), mean);
  VERIFY_IS_APPROX(m1.prod(), p);
  VERIFY_IS_APPROX(m1.real().minCoeff(), ei_real(minc));
  VERIFY_IS_APPROX(m1.real().maxCoeff(), ei_real(maxc));

  // test slice vectorization assuming assign is ok
  Index r0 = ei_random<Index>(0,rows-1);
  Index c0 = ei_random<Index>(0,cols-1);
  Index r1 = ei_random<Index>(r0+1,rows)-r0;
  Index c1 = ei_random<Index>(c0+1,cols)-c0;
  VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum());
  VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean());
  VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).prod(), m1.block(r0,c0,r1,c1).eval().prod());
  VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
  VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
  
  // test empty objects
  VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(),   Scalar(0));
  VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(),  Scalar(1));
}

template<typename VectorType> void vectorRedux(const VectorType& w)
{
  typedef typename VectorType::Index Index;
  typedef typename VectorType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  Index size = w.size();

  VectorType v = VectorType::Random(size);
  for(int i = 1; i < size; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(ei_real(v.coeff(0))), maxc(ei_real(v.coeff(0)));
    for(int j = 0; j < i; j++)
    {
      s += v[j];
      p *= v[j];
      minc = std::min(minc, ei_real(v[j]));
      maxc = std::max(maxc, ei_real(v[j]));
    }
    VERIFY_IS_APPROX(s, v.head(i).sum());
    VERIFY_IS_APPROX(p, v.head(i).prod());
    VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
  }

  for(int i = 0; i < size-1; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i)));
    for(int j = i; j < size; j++)
    {
      s += v[j];
      p *= v[j];
      minc = std::min(minc, ei_real(v[j]));
      maxc = std::max(maxc, ei_real(v[j]));
    }
    VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(s - v.tail(size-i).sum()), Scalar(1));
    VERIFY_IS_APPROX(p, v.tail(size-i).prod());
    VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
  }

  for(int i = 0; i < size/2; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i)));
    for(int j = i; j < size-i; j++)
    {
      s += v[j];
      p *= v[j];
      minc = std::min(minc, ei_real(v[j]));
      maxc = std::max(maxc, ei_real(v[j]));
    }
    VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum());
    VERIFY_IS_APPROX(p, v.segment(i, size-2*i).prod());
    VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
  }
  
  // test empty objects
  VERIFY_IS_APPROX(v.head(0).sum(),   Scalar(0));
  VERIFY_IS_APPROX(v.tail(0).prod(),  Scalar(1));
  VERIFY_RAISES_ASSERT(v.head(0).mean());
  VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
  VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
}

void test_redux()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
    CALL_SUBTEST_2( matrixRedux(Array2f()) );
    CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
    CALL_SUBTEST_3( matrixRedux(Array4d()) );
    CALL_SUBTEST_4( matrixRedux(MatrixXcf(3, 3)) );
    CALL_SUBTEST_4( matrixRedux(ArrayXXcf(3, 3)) );
    CALL_SUBTEST_5( matrixRedux(MatrixXd(8, 12)) );
    CALL_SUBTEST_5( matrixRedux(ArrayXXd(8, 12)) );
    CALL_SUBTEST_6( matrixRedux(MatrixXi(8, 12)) );
    CALL_SUBTEST_6( matrixRedux(ArrayXXi(8, 12)) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_7( vectorRedux(Vector4f()) );
    CALL_SUBTEST_7( vectorRedux(Array4f()) );
    CALL_SUBTEST_5( vectorRedux(VectorXd(10)) );
    CALL_SUBTEST_5( vectorRedux(ArrayXd(10)) );
    CALL_SUBTEST_8( vectorRedux(VectorXf(33)) );
    CALL_SUBTEST_8( vectorRedux(ArrayXf(33)) );
  }
}